Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve -results from the MACHINE registry

PURPOSE: This study investigated the impact of gender differences on the diagnostic performance of machine-learning based coronary CT angiography (cCTA)-derived fractional flow reserve (CT-FFRML) for the detection of lesion-specific ischemia. - METHOD: Five centers enrolled 351 patients (73.5% male)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Baumann, Stefan (VerfasserIn) , Renker, Matthias (VerfasserIn) , Schoepf, U. Joseph (VerfasserIn) , De Cecco, Carlo N. (VerfasserIn) , Coenen, Adriaan (VerfasserIn) , De Geer, Jakob (VerfasserIn) , Kruk, Mariusz (VerfasserIn) , Kim, Young-Hak (VerfasserIn) , Albrecht, Moritz H. (VerfasserIn) , Duguay, Taylor M. (VerfasserIn) , Jacobs, Brian E. (VerfasserIn) , Bayer, Richard R. (VerfasserIn) , Litwin, Sheldon E. (VerfasserIn) , Weiß, Christel (VerfasserIn) , Akın, Ibrahim (VerfasserIn) , Borggrefe, Martin (VerfasserIn) , Yang, Dong Hyun (VerfasserIn) , Kepka, Cezary (VerfasserIn) , Persson, Anders (VerfasserIn) , Nieman, Koen (VerfasserIn) , Tesche, Christian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2019
In: European journal of radiology
Year: 2019, Jahrgang: 119
ISSN:1872-7727
DOI:10.1016/j.ejrad.2019.108657
Online-Zugang:Verlag, Volltext: https://doi.org/10.1016/j.ejrad.2019.108657
Volltext
Verfasserangaben:Stefan Baumann, Matthias Renker, U. Joseph Schoepf, Carlo N. De Cecco, Adriaan Coenen, Jakob De Geer, Mariusz Kruk, Young-Hak Kim, Moritz H. Albrecht, Taylor M. Duguay, Brian E. Jacobs, Richard R. Bayer, Sheldon E. Litwin, Christel Weiss, Ibrahim Akin, Martin Borggrefe, Dong Hyun Yang, Cezary Kepka, Anders Persson, Koen Nieman, Christian Tesche

MARC

LEADER 00000caa a2200000 c 4500
001 1686400802
003 DE-627
005 20220817195730.0
007 cr uuu---uuuuu
008 200103s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ejrad.2019.108657  |2 doi 
035 |a (DE-627)1686400802 
035 |a (DE-599)KXP1686400802 
035 |a (OCoLC)1341286688 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Baumann, Stefan  |d 1983-  |e VerfasserIn  |0 (DE-588)1015785875  |0 (DE-627)669896462  |0 (DE-576)351096906  |4 aut 
245 1 0 |a Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve -results from the MACHINE registry  |c Stefan Baumann, Matthias Renker, U. Joseph Schoepf, Carlo N. De Cecco, Adriaan Coenen, Jakob De Geer, Mariusz Kruk, Young-Hak Kim, Moritz H. Albrecht, Taylor M. Duguay, Brian E. Jacobs, Richard R. Bayer, Sheldon E. Litwin, Christel Weiss, Ibrahim Akin, Martin Borggrefe, Dong Hyun Yang, Cezary Kepka, Anders Persson, Koen Nieman, Christian Tesche 
264 1 |c 2019 
300 |a 6 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 03.01.2020 
520 |a PURPOSE: This study investigated the impact of gender differences on the diagnostic performance of machine-learning based coronary CT angiography (cCTA)-derived fractional flow reserve (CT-FFRML) for the detection of lesion-specific ischemia. - METHOD: Five centers enrolled 351 patients (73.5% male) with 525 vessels in the MACHINE (Machine leArning Based CT angiograpHy derIved FFR: a Multi-ceNtEr) registry. CT-FFRML and invasive FFR ≤ 0.80 were considered hemodynamically significant, whereas cCTA luminal stenosis ≥50% was considered obstructive. The diagnostic performance to assess lesion-specific ischemia in both men and women was assessed on a per-vessel basis. - RESULTS: In total, 398 vessels in men and 127 vessels in women were included. Compared to invasive FFR, CT-FFRML reached a sensitivity, specificity, positive predictive value, and negative predictive value of 78% (95%CI 72-84), 79% (95%CI 73-84), 75% (95%CI 69-79), and 82% (95%CI: 76-86) in men vs. 75% (95%CI 58-88), 81 (95%CI 72-89), 61% (95%CI 50-72) and 89% (95%CI 82-94) in women, respectively. CT-FFRML showed no statistically significant difference in the area under the receiver-operating characteristic curve (AUC) in men vs. women (AUC: 0.83 [95%CI 0.79-0.87] vs. 0.83 [95%CI 0.75-0.89], p = 0.89). CT-FFRML was not superior to cCTA alone [AUC: 0.83 (95%CI: 0.75-0.89) vs. 0.74 (95%CI: 0.65-0.81), p = 0.12] in women, but showed a statistically significant improvement in men [0.83 (95%CI: 0.79-0.87) vs. 0.76 (95%CI: 0.71-0.80), p = 0.007]. - CONCLUSIONS: Machine-learning based CT-FFR performs equally in men and women with superior diagnostic performance over cCTA alone for the detection of lesion-specific ischemia. 
650 4 |a Computed Tomography Angiography 
650 4 |a Coronary Angiography 
650 4 |a Coronary artery disease 
650 4 |a Coronary Stenosis 
650 4 |a Epidemiologic Methods 
650 4 |a Female 
650 4 |a Fractional flow reserve 
650 4 |a Fractional Flow Reserve, Myocardial 
650 4 |a Hemodynamics 
650 4 |a Humans 
650 4 |a Machine learning 
650 4 |a Machine Learning 
650 4 |a Male 
650 4 |a Middle Aged 
650 4 |a Myocardial Ischemia 
650 4 |a Sex Factors 
650 4 |a Spiral computed tomography 
650 4 |a Tomography, Spiral Computed 
700 1 |a Renker, Matthias  |e VerfasserIn  |4 aut 
700 1 |a Schoepf, U. Joseph  |e VerfasserIn  |4 aut 
700 1 |a De Cecco, Carlo N.  |e VerfasserIn  |4 aut 
700 1 |a Coenen, Adriaan  |e VerfasserIn  |4 aut 
700 1 |a De Geer, Jakob  |e VerfasserIn  |4 aut 
700 1 |a Kruk, Mariusz  |e VerfasserIn  |4 aut 
700 1 |a Kim, Young-Hak  |e VerfasserIn  |4 aut 
700 1 |a Albrecht, Moritz H.  |e VerfasserIn  |4 aut 
700 1 |a Duguay, Taylor M.  |e VerfasserIn  |4 aut 
700 1 |a Jacobs, Brian E.  |e VerfasserIn  |4 aut 
700 1 |a Bayer, Richard R.  |e VerfasserIn  |4 aut 
700 1 |a Litwin, Sheldon E.  |e VerfasserIn  |4 aut 
700 1 |a Weiß, Christel  |d 1958-  |e VerfasserIn  |0 (DE-588)123287707  |0 (DE-627)082463417  |0 (DE-576)168356104  |4 aut 
700 1 |a Akın, Ibrahim  |d 1978-  |e VerfasserIn  |0 (DE-588)132322293  |0 (DE-627)521039010  |0 (DE-576)299074366  |4 aut 
700 1 |a Borggrefe, Martin  |e VerfasserIn  |0 (DE-588)1025920546  |0 (DE-627)725574232  |0 (DE-576)370913426  |4 aut 
700 1 |a Yang, Dong Hyun  |e VerfasserIn  |4 aut 
700 1 |a Kepka, Cezary  |e VerfasserIn  |4 aut 
700 1 |a Persson, Anders  |e VerfasserIn  |4 aut 
700 1 |a Nieman, Koen  |e VerfasserIn  |4 aut 
700 1 |a Tesche, Christian  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t European journal of radiology  |d Amsterdam [u.a.] : Elsevier Science, 1990  |g 119(2019) Artikel-Nummer 108657, 6 Seiten  |h Online-Ressource  |w (DE-627)32044483X  |w (DE-600)2005350-2  |w (DE-576)099718138  |x 1872-7727  |7 nnas  |a Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve -results from the MACHINE registry 
773 1 8 |g volume:119  |g year:2019  |g extent:6  |a Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve -results from the MACHINE registry 
856 4 0 |u https://doi.org/10.1016/j.ejrad.2019.108657  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20200103 
993 |a Article 
994 |a 2019 
998 |g 1025920546  |a Borggrefe, Martin  |m 1025920546:Borggrefe, Martin  |d 60000  |d 61000  |e 60000PB1025920546  |e 61000PB1025920546  |k 0/60000/  |k 1/60000/61000/  |p 16 
998 |g 132322293  |a Akın, Ibrahim  |m 132322293:Akın, Ibrahim  |d 60000  |d 61000  |e 60000PA132322293  |e 61000PA132322293  |k 0/60000/  |k 1/60000/61000/  |p 15 
998 |g 123287707  |a Weiß, Christel  |m 123287707:Weiß, Christel  |d 60000  |d 60200  |d 60250  |e 60000PW123287707  |e 60200PW123287707  |e 60250PW123287707  |k 0/60000/  |k 1/60000/60200/  |k 2/60000/60200/60250/  |p 14 
998 |g 1015785875  |a Baumann, Stefan  |m 1015785875:Baumann, Stefan  |d 60000  |d 61000  |e 60000PB1015785875  |e 61000PB1015785875  |k 0/60000/  |k 1/60000/61000/  |p 1  |x j 
999 |a KXP-PPN1686400802  |e 357229889X 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Stefan Baumann, Matthias Renker, U. Joseph Schoepf, Carlo N. De Cecco, Adriaan Coenen, Jakob De Geer, Mariusz Kruk, Young-Hak Kim, Moritz H. Albrecht, Taylor M. Duguay, Brian E. Jacobs, Richard R. Bayer, Sheldon E. Litwin, Christel Weiss, Ibrahim Akin, Martin Borggrefe, Dong Hyun Yang, Cezary Kepka, Anders Persson, Koen Nieman, Christian Tesche"]},"id":{"eki":["1686400802"],"doi":["10.1016/j.ejrad.2019.108657"]},"physDesc":[{"extent":"6 S."}],"recId":"1686400802","origin":[{"dateIssuedDisp":"2019","dateIssuedKey":"2019"}],"person":[{"display":"Baumann, Stefan","role":"aut","given":"Stefan","family":"Baumann"},{"family":"Renker","role":"aut","given":"Matthias","display":"Renker, Matthias"},{"display":"Schoepf, U. Joseph","family":"Schoepf","role":"aut","given":"U. Joseph"},{"family":"De Cecco","given":"Carlo N.","role":"aut","display":"De Cecco, Carlo N."},{"given":"Adriaan","role":"aut","family":"Coenen","display":"Coenen, Adriaan"},{"display":"De Geer, Jakob","family":"De Geer","role":"aut","given":"Jakob"},{"display":"Kruk, Mariusz","family":"Kruk","given":"Mariusz","role":"aut"},{"display":"Kim, Young-Hak","role":"aut","given":"Young-Hak","family":"Kim"},{"display":"Albrecht, Moritz H.","role":"aut","given":"Moritz H.","family":"Albrecht"},{"family":"Duguay","given":"Taylor M.","role":"aut","display":"Duguay, Taylor M."},{"family":"Jacobs","given":"Brian E.","role":"aut","display":"Jacobs, Brian E."},{"display":"Bayer, Richard R.","role":"aut","given":"Richard R.","family":"Bayer"},{"family":"Litwin","role":"aut","given":"Sheldon E.","display":"Litwin, Sheldon E."},{"family":"Weiß","given":"Christel","role":"aut","display":"Weiß, Christel"},{"family":"Akın","role":"aut","given":"Ibrahim","display":"Akın, Ibrahim"},{"display":"Borggrefe, Martin","family":"Borggrefe","role":"aut","given":"Martin"},{"display":"Yang, Dong Hyun","family":"Yang","given":"Dong Hyun","role":"aut"},{"display":"Kepka, Cezary","family":"Kepka","given":"Cezary","role":"aut"},{"family":"Persson","role":"aut","given":"Anders","display":"Persson, Anders"},{"family":"Nieman","given":"Koen","role":"aut","display":"Nieman, Koen"},{"display":"Tesche, Christian","role":"aut","given":"Christian","family":"Tesche"}],"relHost":[{"part":{"volume":"119","text":"119(2019) Artikel-Nummer 108657, 6 Seiten","extent":"6","year":"2019"},"id":{"zdb":["2005350-2"],"issn":["1872-7727"],"eki":["32044483X"]},"titleAlt":[{"title":"EJR"}],"pubHistory":["Nachgewiesen 10.1990 -"],"disp":"Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve -results from the MACHINE registryEuropean journal of radiology","recId":"32044483X","physDesc":[{"extent":"Online-Ressource"}],"title":[{"subtitle":"EJR","title":"European journal of radiology","title_sort":"European journal of radiology"}],"note":["Gesehen am 05.02.20"],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"origin":[{"publisher":"Elsevier Science","publisherPlace":"Amsterdam [u.a.]","dateIssuedKey":"1990","dateIssuedDisp":"1990-"}]}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"note":["Gesehen am 03.01.2020"],"title":[{"title":"Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve -results from the MACHINE registry","title_sort":"Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve -results from the MACHINE registry"}]} 
SRT |a BAUMANNSTEGENDERDIFF2019