A toolbox for functional analysis and the systematic identification of diagnostic and prognostic gene expression signatures combining meta-analysis and machine learning

The identification of biomarker signatures is important for cancer diagnosis and prognosis. However, the detection of clinical reliable signatures is influenced by limited data availability, which may restrict statistical power. Moreover, methods for integration of large sample cohorts and signature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Vey, Johannes (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 21 October 2019
In: Cancers
Year: 2019, Jahrgang: 11, Heft: 10, Pages: 1606
ISSN:2072-6694
DOI:10.3390/cancers11101606
Online-Zugang:Verlag, Volltext: https://doi.org/10.3390/cancers11101606
Verlag: https://www.mdpi.com/2072-6694/11/10/1606
Volltext
Verfasserangaben:Johannes Vey, Lorenz A. Kapsner, Maximilian Fuchs, Philipp Unberath, Giulia Veronesi and Meik Kunz

MARC

LEADER 00000caa a2200000 c 4500
001 1687018154
003 DE-627
005 20230428051609.0
007 cr uuu---uuuuu
008 200110s2019 xx |||||o 00| ||eng c
024 7 |a 10.3390/cancers11101606  |2 doi 
035 |a (DE-627)1687018154 
035 |a (DE-599)KXP1687018154 
035 |a (OCoLC)1341297407 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Vey, Johannes  |e VerfasserIn  |0 (DE-588)1202625274  |0 (DE-627)1687019436  |4 aut 
245 1 2 |a A toolbox for functional analysis and the systematic identification of diagnostic and prognostic gene expression signatures combining meta-analysis and machine learning  |c Johannes Vey, Lorenz A. Kapsner, Maximilian Fuchs, Philipp Unberath, Giulia Veronesi and Meik Kunz 
264 1 |c 21 October 2019 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 10.01.2020 
520 |a The identification of biomarker signatures is important for cancer diagnosis and prognosis. However, the detection of clinical reliable signatures is influenced by limited data availability, which may restrict statistical power. Moreover, methods for integration of large sample cohorts and signature identification are limited. We present a step-by-step computational protocol for functional gene expression analysis and the identification of diagnostic and prognostic signatures by combining meta-analysis with machine learning and survival analysis. The novelty of the toolbox lies in its all-in-one functionality, generic design, and modularity. It is exemplified for lung cancer, including a comprehensive evaluation using different validation strategies. However, the protocol is not restricted to specific disease types and can therefore be used by a broad community. The accompanying R package vignette runs in ~1 h and describes the workflow in detail for use by researchers with limited bioinformatics training. 
650 4 |a Bioinformatics tool 
650 4 |a biomarker signature 
650 4 |a functional analysis 
650 4 |a gene expression analysis 
650 4 |a machine learning 
650 4 |a meta-analysis 
650 4 |a R package 
650 4 |a survival analysis 
773 0 8 |i Enthalten in  |t Cancers  |d Basel : MDPI, 2009  |g 11(2019,10) Artikel-Nummer 1606, 14 Seiten  |h Online-Ressource  |w (DE-627)614095670  |w (DE-600)2527080-1  |w (DE-576)313958548  |x 2072-6694  |7 nnas  |a A toolbox for functional analysis and the systematic identification of diagnostic and prognostic gene expression signatures combining meta-analysis and machine learning 
773 1 8 |g volume:11  |g year:2019  |g number:10  |g pages:1606  |g extent:14  |a A toolbox for functional analysis and the systematic identification of diagnostic and prognostic gene expression signatures combining meta-analysis and machine learning 
856 4 0 |u https://doi.org/10.3390/cancers11101606  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://www.mdpi.com/2072-6694/11/10/1606  |x Verlag 
951 |a AR 
992 |a 20200110 
993 |a Article 
994 |a 2019 
998 |g 1202625274  |a Vey, Johannes  |m 1202625274:Vey, Johannes  |d 910000  |d 999701  |e 910000PV1202625274  |e 999701PV1202625274  |k 0/910000/  |k 1/910000/999701/  |p 1  |x j 
999 |a KXP-PPN1687018154  |e 3573856306 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"note":["Gesehen am 27.05.2020"],"type":{"media":"Online-Ressource","bibl":"periodical"},"origin":[{"dateIssuedDisp":"2009-","publisher":"MDPI","publisherPlace":"Basel","dateIssuedKey":"2009"}],"title":[{"title_sort":"Cancers","title":"Cancers"}],"pubHistory":["1.2009 -"],"language":["eng"],"disp":"A toolbox for functional analysis and the systematic identification of diagnostic and prognostic gene expression signatures combining meta-analysis and machine learningCancers","physDesc":[{"extent":"Online-Ressource"}],"part":{"issue":"10","year":"2019","text":"11(2019,10) Artikel-Nummer 1606, 14 Seiten","pages":"1606","volume":"11","extent":"14"},"name":{"displayForm":["Molecular Diversity Preservation International (MDPI)"]},"recId":"614095670","id":{"zdb":["2527080-1"],"issn":["2072-6694"],"eki":["614095670"]}}],"name":{"displayForm":["Johannes Vey, Lorenz A. Kapsner, Maximilian Fuchs, Philipp Unberath, Giulia Veronesi and Meik Kunz"]},"recId":"1687018154","id":{"doi":["10.3390/cancers11101606"],"eki":["1687018154"]},"language":["eng"],"physDesc":[{"extent":"14 S."}],"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"21 October 2019"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"display":"Vey, Johannes","given":"Johannes","family":"Vey","role":"aut"}],"title":[{"title":"A toolbox for functional analysis and the systematic identification of diagnostic and prognostic gene expression signatures combining meta-analysis and machine learning","title_sort":"toolbox for functional analysis and the systematic identification of diagnostic and prognostic gene expression signatures combining meta-analysis and machine learning"}],"note":["Gesehen am 10.01.2020"]} 
SRT |a VEYJOHANNETOOLBOXFOR2120