Predictive modeling of intrinsic strengths for several groups of chemically related monolayers by a reference model

The linear correlation between the ratios of linear and nonlinear intrinsic mechanical properties allows the prediction of largely unknown nonlinear fracture properties of brittle two-dimensional (2D) solids using a reference model. It is demonstrated that from accurately known Young's moduli u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hess, Peter (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 8th Febraury 2018
In: Physical chemistry, chemical physics
Year: 2018, Jahrgang: 20, Heft: 11, Pages: 7604-7611
ISSN:1463-9084
DOI:10.1039/C7CP06621J
Online-Zugang:Verlag, Volltext: https://doi.org/10.1039/C7CP06621J
Verlag, Volltext: https://pubs.rsc.org/en/content/articlelanding/2018/cp/c7cp06621j
Volltext
Verfasserangaben:Peter Hess

MARC

LEADER 00000caa a2200000 c 4500
001 1687284172
003 DE-627
005 20230427090117.0
007 cr uuu---uuuuu
008 200114s2018 xx |||||o 00| ||eng c
024 7 |a 10.1039/C7CP06621J  |2 doi 
035 |a (DE-627)1687284172 
035 |a (DE-599)KXP1687284172 
035 |a (OCoLC)1341297794 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 30  |2 sdnb 
100 1 |a Hess, Peter  |d 1941-  |e VerfasserIn  |0 (DE-588)122041135  |0 (DE-627)081699611  |0 (DE-576)302553339  |4 aut 
245 1 0 |a Predictive modeling of intrinsic strengths for several groups of chemically related monolayers by a reference model  |c Peter Hess 
264 1 |c 8th Febraury 2018 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Accepted 8th Febraury 2018 
500 |a Gesehen am 14.01.2020 
520 |a The linear correlation between the ratios of linear and nonlinear intrinsic mechanical properties allows the prediction of largely unknown nonlinear fracture properties of brittle two-dimensional (2D) solids using a reference model. It is demonstrated that from accurately known Young's moduli unknown theoretical strengths can be derived. The predictive power of the reference model for the systematic evaluation of the fundamental mechanical behavior of whole groups of compounds with chemically-related configurations is shown. This is revealed for graphene-like atomic monolayers, various derivatives of graphene, transition-metal dichalcogenide (TMDC), and transition-metal monochalcogenide (TMMC) molecular monolayers of the fast growing family of 2D solids. The estimated unknown intrinsic strengths represent the upper limits for the mechanical performance of 2D compounds and can be used to judge the actual deviations between real monolayers and their ideal counterparts. A detailed comparison of the reference model with existing experiments and density functional theory (DFT) calculations confirmed that the ratios of Young's moduli and intrinsic strengths reach a factor of ∼6 for strongly bonded TMMCs, the bulk value of ∼9 for graphene-like monolayers, ∼11 for graphene derivatives, whereas for transition-metal dichalcogenide (TMDC) monolayers the ratio is ∼13.5. With its minimal requirement of mechanical input data and its versatility the reference model provides a unique tool to predict unknown nonlinear mechanical properties. 
773 0 8 |i Enthalten in  |t Physical chemistry, chemical physics  |d Cambridge : RSC Publ., 1999  |g 20(2018), 11, Seite 7604-7611  |h Online-Ressource  |w (DE-627)270125175  |w (DE-600)1476244-4  |w (DE-576)080160328  |x 1463-9084  |7 nnas  |a Predictive modeling of intrinsic strengths for several groups of chemically related monolayers by a reference model 
773 1 8 |g volume:20  |g year:2018  |g number:11  |g pages:7604-7611  |g extent:8  |a Predictive modeling of intrinsic strengths for several groups of chemically related monolayers by a reference model 
856 4 0 |u https://doi.org/10.1039/C7CP06621J  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://pubs.rsc.org/en/content/articlelanding/2018/cp/c7cp06621j  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20200114 
993 |a Article 
994 |a 2018 
998 |g 122041135  |a Hess, Peter  |m 122041135:Hess, Peter  |d 120000  |d 120300  |e 120000PH122041135  |e 120300PH122041135  |k 0/120000/  |k 1/120000/120300/  |p 1  |x j  |y j 
999 |a KXP-PPN1687284172  |e 3575042357 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedDisp":"8th Febraury 2018","dateIssuedKey":"2018"}],"id":{"eki":["1687284172"],"doi":["10.1039/C7CP06621J"]},"name":{"displayForm":["Peter Hess"]},"physDesc":[{"extent":"8 S."}],"relHost":[{"name":{"displayForm":["RSC, Royal Society of Chemistry"]},"origin":[{"publisherPlace":"Cambridge","dateIssuedKey":"1999","publisher":"RSC Publ.","dateIssuedDisp":"1999-"}],"id":{"zdb":["1476244-4"],"eki":["270125175"],"issn":["1463-9084"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Physical chemistry, chemical physics","title":"Physical chemistry, chemical physics","subtitle":"PCCP ; a journal of European chemical societies"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Predictive modeling of intrinsic strengths for several groups of chemically related monolayers by a reference modelPhysical chemistry, chemical physics","note":["Gesehen am 20.02.24"],"language":["eng"],"corporate":[{"role":"isb","display":"Royal Society of Chemistry","roleDisplay":"Herausgebendes Organ"}],"recId":"270125175","pubHistory":["1.1999 -"],"part":{"year":"2018","issue":"11","pages":"7604-7611","volume":"20","text":"20(2018), 11, Seite 7604-7611","extent":"8"},"titleAlt":[{"title":"PCCP"}]}],"title":[{"title":"Predictive modeling of intrinsic strengths for several groups of chemically related monolayers by a reference model","title_sort":"Predictive modeling of intrinsic strengths for several groups of chemically related monolayers by a reference model"}],"person":[{"given":"Peter","family":"Hess","role":"aut","roleDisplay":"VerfasserIn","display":"Hess, Peter"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Accepted 8th Febraury 2018","Gesehen am 14.01.2020"],"recId":"1687284172","language":["eng"]} 
SRT |a HESSPETERPREDICTIVE8201