Weak completeness notions for exponential time

Lutz (SIAM J. Comput. 24(6), 1170-1189, 1995) proposed the following generalization of hardness: While a problem A is hard for a complexity class C if all problems in C can be reduced to A, Lutz calls a problem weakly hard if a nonnegligible part of the problems in C can be reduced to A. For the lin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ambos-Spies, Klaus (VerfasserIn) , Bakibayev, Timur (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 04 April 2019
In: Theory of computing systems
Year: 2019, Jahrgang: 63, Heft: 6, Pages: 1388-1412
ISSN:1433-0490
DOI:10.1007/s00224-019-09920-4
Online-Zugang:Verlag, Volltext: https://doi.org/10.1007/s00224-019-09920-4
Verlag: https://doi.org/10.1007/s00224-019-09920-4
Volltext
Verfasserangaben:Klaus Ambos-Spies, Timur Bakibayev

MARC

LEADER 00000caa a2200000 c 4500
001 1687445257
003 DE-627
005 20220817204917.0
007 cr uuu---uuuuu
008 200115s2019 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00224-019-09920-4  |2 doi 
035 |a (DE-627)1687445257 
035 |a (DE-599)KXP1687445257 
035 |a (OCoLC)1341298156 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Ambos-Spies, Klaus  |d 1951-  |e VerfasserIn  |0 (DE-588)141551607  |0 (DE-627)629951861  |0 (DE-576)16006810X  |4 aut 
245 1 0 |a Weak completeness notions for exponential time  |c Klaus Ambos-Spies, Timur Bakibayev 
264 1 |c 04 April 2019 
300 |a 25 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 15.01.2020 
520 |a Lutz (SIAM J. Comput. 24(6), 1170-1189, 1995) proposed the following generalization of hardness: While a problem A is hard for a complexity class C if all problems in C can be reduced to A, Lutz calls a problem weakly hard if a nonnegligible part of the problems in C can be reduced to A. For the linear exponential time class E = DTIME(2lin), Lutz formalized these ideas by introducing a resource-bounded (pseudo) measure on this class and by saying that a subclass of E is negligible if it has measure 0 in E. In this paper we introduce two new weak hardness notions for E - E-nontriviality and strongly E-nontriviality. They generalize Lutz’s weak hardness notion for E, but are much simpler conceptually. Namely, a set A is E-nontrivial if, for any k ≥ 1, there is a set Bk ∈E which can be reduced to A (by a polynomial time many-one reduction) and which cannot be computed in time O(2kn), and a set A is strongly E-nontrivial if the set Bk can be chosen to be almost everywhereO(2kn)-complex, i.e. if Bk can be chosen such that any algorithm that computes Bk runs for more than 2k|x| steps on all but finitely many inputs x. 
650 4 |a Almost everywhere complexity 
650 4 |a Completeness 
650 4 |a Exponential time 
650 4 |a Resource-bounded measure 
650 4 |a Weak completeness 
700 1 |a Bakibayev, Timur  |e VerfasserIn  |0 (DE-588)140976795  |0 (DE-627)703847023  |0 (DE-576)321269721  |4 aut 
773 0 8 |i Enthalten in  |t Theory of computing systems  |d New York, NY : Springer, 1997  |g 63(2019), 6, Seite 1388-1412  |h Online-Ressource  |w (DE-627)254909728  |w (DE-600)1463181-7  |w (DE-576)074754165  |x 1433-0490  |7 nnas  |a Weak completeness notions for exponential time 
773 1 8 |g volume:63  |g year:2019  |g number:6  |g pages:1388-1412  |g extent:25  |a Weak completeness notions for exponential time 
856 4 0 |u https://doi.org/10.1007/s00224-019-09920-4  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://doi.org/10.1007/s00224-019-09920-4  |x Verlag 
951 |a AR 
992 |a 20200115 
993 |a Article 
994 |a 2019 
998 |g 141551607  |a Ambos-Spies, Klaus  |m 141551607:Ambos-Spies, Klaus  |d 110000  |d 110300  |e 110000PA141551607  |e 110300PA141551607  |k 0/110000/  |k 1/110000/110300/  |p 1  |x j 
999 |a KXP-PPN1687445257  |e 3575576726 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"family":"Ambos-Spies","given":"Klaus","roleDisplay":"VerfasserIn","display":"Ambos-Spies, Klaus","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Bakibayev, Timur","given":"Timur","family":"Bakibayev"}],"title":[{"title":"Weak completeness notions for exponential time","title_sort":"Weak completeness notions for exponential time"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 15.01.2020"],"recId":"1687445257","language":["eng"],"name":{"displayForm":["Klaus Ambos-Spies, Timur Bakibayev"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"04 April 2019"}],"id":{"doi":["10.1007/s00224-019-09920-4"],"eki":["1687445257"]},"physDesc":[{"extent":"25 S."}],"relHost":[{"part":{"text":"63(2019), 6, Seite 1388-1412","volume":"63","extent":"25","year":"2019","issue":"6","pages":"1388-1412"},"pubHistory":["30.1997 -"],"language":["eng"],"recId":"254909728","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 08.05.07"],"disp":"Weak completeness notions for exponential timeTheory of computing systems","title":[{"title":"Theory of computing systems","title_sort":"Theory of computing systems"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1433-0490"],"zdb":["1463181-7"],"eki":["254909728"]},"origin":[{"publisherPlace":"New York, NY ; [Berlin ; Heidelberg]","dateIssuedDisp":"1997-","dateIssuedKey":"1997","publisher":"Springer ; Springer"}]}]} 
SRT |a AMBOSSPIESWEAKCOMPLE0420