How to GAN LHC events

Event generation for the LHC can be supplemented by generative adversarial networks, which generate physical events and avoid highly inefficient event unweighting. For top pair production we show how such a network describes intermediate on-shell particles, phase space boundaries, and tails of distr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Butter, Anja (VerfasserIn) , Plehn, Tilman (VerfasserIn) , Winterhalder, Ramon (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 04-12-2019
In: SciPost physics
Year: 2019, Jahrgang: 7, Heft: 6
ISSN:2542-4653
DOI:10.21468/SciPostPhys.7.6.075
Online-Zugang:Verlag, Volltext: https://doi.org/10.21468/SciPostPhys.7.6.075
Verlag: https://scipost.org/10.21468/SciPostPhys.7.6.075
Volltext
Verfasserangaben:Anja Butter, Tilman Plehn and Ramon Winterhalder
Beschreibung
Zusammenfassung:Event generation for the LHC can be supplemented by generative adversarial networks, which generate physical events and avoid highly inefficient event unweighting. For top pair production we show how such a network describes intermediate on-shell particles, phase space boundaries, and tails of distributions. In particular, we introduce the maximum mean discrepancy to resolve sharp local features. It can be extended in a straightforward manner to include for instance off-shell contributions, higher orders, or approximate detector effects.
Beschreibung:Gesehen am 10.12.2020
Beschreibung:Online Resource
ISSN:2542-4653
DOI:10.21468/SciPostPhys.7.6.075