Bound-preserving flux limiting schemes for DG discretizations of conservation laws with applications to the Cahn-Hilliard equation

Many mathematical models of computational fluid dynamics involve transport of conserved quantities, which must lie in a certain range to be physically meaningful. The analytical or numerical solution u of a scalar conservation law is said to be bound-preserving if global bounds u∗ and u∗ exist such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Frank, Florian (VerfasserIn) , Rupp, Andreas (VerfasserIn) , Kuzmin, D. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2020
In: Computer methods in applied mechanics and engineering
Year: 2019, Jahrgang: 359
ISSN:1879-2138
DOI:10.1016/j.cma.2019.112665
Online-Zugang:Verlag, Volltext: https://doi.org/10.1016/j.cma.2019.112665
Verlag: http://www.sciencedirect.com/science/article/pii/S004578251930550X
Volltext
Verfasserangaben:Florian Frank, Andreas Rupp, Dmitri Kuzmin

MARC

LEADER 00000caa a2200000 c 4500
001 1688022384
003 DE-627
005 20251220131933.0
007 cr uuu---uuuuu
008 200122r20202019xx |||||o 00| ||eng c
024 7 |a 10.1016/j.cma.2019.112665  |2 doi 
035 |a (DE-627)1688022384 
035 |a (DE-599)KXP1688022384 
035 |a (OCoLC)1341298916 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Frank, Florian  |e VerfasserIn  |0 (DE-588)1046510207  |0 (DE-627)776921444  |0 (DE-576)399852166  |4 aut 
245 1 0 |a Bound-preserving flux limiting schemes for DG discretizations of conservation laws with applications to the Cahn-Hilliard equation  |c Florian Frank, Andreas Rupp, Dmitri Kuzmin 
264 1 |c 2020 
300 |a 25 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Available online 10 October 2019 
500 |a Gesehen am 22.01.2020 
520 |a Many mathematical models of computational fluid dynamics involve transport of conserved quantities, which must lie in a certain range to be physically meaningful. The analytical or numerical solution u of a scalar conservation law is said to be bound-preserving if global bounds u∗ and u∗ exist such that u∗≤u≤u∗ holds in the domain of definition. These bounds must be known a priori. To enforce such inequality constraints at least for element averages in the context of discontinuous Galerkin (DG) methods, the numerical fluxes must be defined and constrained in an appropriate manner. In this work, we introduce a general framework for calculating fluxes that produce non-oscillatory DG approximations and preserve relevant global bounds for element averages even if the analytical solution of the PDE violates them due to modeling errors. The proposed methodology is based on a combination of flux and slope limiting. The (optional) slope limiter adjusts the gradients to impose local bounds on pointwise values of the high-order DG solution, which is used to calculate the fluxes. The flux limiter constrains changes of element averages so as to prevent violations of global bounds. Since manipulations of the target flux may introduce a consistency error, it is essential to guarantee that physically admissible fluxes remain unchanged. We propose two kinds of flux limiters, which meet this requirement. The first one is of monolithic type and its time-implicit version requires the iterative solution of a nonlinear problem. Only a fully converged solution is provably bound-preserving. The time-explicit version of this limiter is subject to a time step restriction, which we derive in this article. The second limiter is an iterative version of the multidimensional flux-corrected transport (FCT) algorithm and works as postprocessed correction scheme. This fractional step limiting approach guarantees that each iterate is bound-preserving but avoidable consistency errors may occur if the iterative process is terminated too early. Each iterate depends only on local information of the previous iterate. This concept of limiting the numerical fluxes is also applicable to finite volume methods. Practical applicability of the proposed flux limiters as well as the benefits of using an optional slope limiter are demonstrated by numerical studies for the advection equation (hyperbolic, linear) and the Cahn-Hilliard equation (parabolic, nonlinear) for first-order polynomials. While both flux limiters work for arbitrary order polynomials, we discuss the construction of bound-preserving slope limiters, and show numerical studies only for first-order polynomials. 
534 |c 2019 
650 4 |a Bound-preserving discrete solution 
650 4 |a Discontinuous Galerkin method 
650 4 |a Flux corrected transport 
650 4 |a Flux limiting 
650 4 |a Phase-field equation 
650 4 |a Slope limiting 
700 1 |a Rupp, Andreas  |d 1992-  |e VerfasserIn  |0 (DE-588)1191198812  |0 (DE-627)1669602907  |4 aut 
700 1 |a Kuzmin, D.  |d 1974-  |e VerfasserIn  |0 (DE-588)1011171775  |0 (DE-627)658048880  |0 (DE-576)34106016X  |4 aut 
773 0 8 |i Enthalten in  |t Computer methods in applied mechanics and engineering  |d Amsterdam [u.a.] : Elsevier Science, 1972  |g 359(2020) Artikel-Nummer 112665, 25 Seiten  |h Online-Ressource  |w (DE-627)306715848  |w (DE-600)1501322-4  |w (DE-576)094531285  |x 1879-2138  |7 nnas  |a Bound-preserving flux limiting schemes for DG discretizations of conservation laws with applications to the Cahn-Hilliard equation 
773 1 8 |g volume:359  |g year:2020  |g extent:25  |a Bound-preserving flux limiting schemes for DG discretizations of conservation laws with applications to the Cahn-Hilliard equation 
856 4 0 |u https://doi.org/10.1016/j.cma.2019.112665  |x Verlag  |x Resolving-System  |3 Volltext  |7 1 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S004578251930550X  |x Verlag  |7 1 
951 |a AR 
992 |a 20200122 
993 |a Article 
994 |a 2020 
998 |g 1191198812  |a Rupp, Andreas  |m 1191198812:Rupp, Andreas  |d 700000  |d 708000  |e 700000PR1191198812  |e 708000PR1191198812  |k 0/700000/  |k 1/700000/708000/  |p 2 
999 |a KXP-PPN1688022384  |e 3578601152 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"25 S."}],"relHost":[{"language":["eng"],"recId":"306715848","disp":"Bound-preserving flux limiting schemes for DG discretizations of conservation laws with applications to the Cahn-Hilliard equationComputer methods in applied mechanics and engineering","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 06.01.2021"],"part":{"volume":"359","text":"359(2020) Artikel-Nummer 112665, 25 Seiten","extent":"25","year":"2020"},"pubHistory":["1.1972 - 200.2011; Vol. 201/204.2012 -"],"title":[{"title":"Computer methods in applied mechanics and engineering","title_sort":"Computer methods in applied mechanics and engineering"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["1501322-4"],"eki":["306715848"],"issn":["1879-2138"]},"origin":[{"publisherPlace":"Amsterdam [u.a.]","publisher":"Elsevier Science","dateIssuedKey":"1972","dateIssuedDisp":"1972-"}]}],"name":{"displayForm":["Florian Frank, Andreas Rupp, Dmitri Kuzmin"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"2020"}],"id":{"eki":["1688022384"],"doi":["10.1016/j.cma.2019.112665"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Available online 10 October 2019","Gesehen am 22.01.2020"],"recId":"1688022384","language":["eng"],"person":[{"role":"aut","display":"Frank, Florian","roleDisplay":"VerfasserIn","given":"Florian","family":"Frank"},{"role":"aut","display":"Rupp, Andreas","roleDisplay":"VerfasserIn","given":"Andreas","family":"Rupp"},{"family":"Kuzmin","given":"D.","roleDisplay":"VerfasserIn","display":"Kuzmin, D.","role":"aut"}],"title":[{"title":"Bound-preserving flux limiting schemes for DG discretizations of conservation laws with applications to the Cahn-Hilliard equation","title_sort":"Bound-preserving flux limiting schemes for DG discretizations of conservation laws with applications to the Cahn-Hilliard equation"}]} 
SRT |a FRANKFLORIBOUNDPRESE2020