Convergence rates for the generalized Fréchet mean via the quadruple inequality

For sets QQ\mathcal{Q} and YY\mathcal{Y}, the generalized Fréchet mean m∈Qm∈Qm\in \mathcal{Q} of a random variable YYY, which has values in YY\mathcal{Y}, is any minimizer of q↦E[c(q,Y)]q↦E[c(q,Y)]q\mapsto \mathbb{E}[\mathfrak{c}(q,Y)], where c:Q×Y→Rc:Q×Y→R\mathfrak{c}\colon \mathcal{Q}\times \math...

Full description

Saved in:
Bibliographic Details
Main Author: Schötz, Christof (Author)
Format: Article (Journal)
Language:English
Published: 2019
In: Electronic journal of statistics
Year: 2019, Volume: 13, Issue: 2, Pages: 4280-4345
ISSN:1935-7524
DOI:10.1214/19-EJS1618
Online Access:Verlag, Volltext: https://doi.org/10.1214/19-EJS1618
Verlag, Volltext: https://projecteuclid.org/euclid.ejs/1572249628
Get full text
Author Notes:Christof Schötz
Description
Summary:For sets QQ\mathcal{Q} and YY\mathcal{Y}, the generalized Fréchet mean m∈Qm∈Qm\in \mathcal{Q} of a random variable YYY, which has values in YY\mathcal{Y}, is any minimizer of q↦E[c(q,Y)]q↦E[c(q,Y)]q\mapsto \mathbb{E}[\mathfrak{c}(q,Y)], where c:Q×Y→Rc:Q×Y→R\mathfrak{c}\colon \mathcal{Q}\times \mathcal{Y}\to \mathbb{R} is a cost function. There are little restrictions to QQ\mathcal{Q} and YY\mathcal{Y}. In particular, QQ\mathcal{Q} can be a non-Euclidean metric space. We provide convergence rates for the empirical generalized Fréchet mean. Conditions for rates in probability and rates in expectation are given. In contrast to previous results on Fréchet means, we do not require a finite diameter of the QQ\mathcal{Q} or YY\mathcal{Y}. Instead, we assume an inequality, which we call quadruple inequality. It generalizes an otherwise common Lipschitz condition on the cost function. This quadruple inequality is known to hold in Hadamard spaces. We show that it also holds in a suitable way for certain powers of a Hadamard-metric.
Item Description:Gesehen am 27.01.2020
Physical Description:Online Resource
ISSN:1935-7524
DOI:10.1214/19-EJS1618