Convergence rates for the generalized Fréchet mean via the quadruple inequality
For sets QQ\mathcal{Q} and YY\mathcal{Y}, the generalized Fréchet mean m∈Qm∈Qm\in \mathcal{Q} of a random variable YYY, which has values in YY\mathcal{Y}, is any minimizer of q↦E[c(q,Y)]q↦E[c(q,Y)]q\mapsto \mathbb{E}[\mathfrak{c}(q,Y)], where c:Q×Y→Rc:Q×Y→R\mathfrak{c}\colon \mathcal{Q}\times \math...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2019
|
| In: |
Electronic journal of statistics
Year: 2019, Jahrgang: 13, Heft: 2, Pages: 4280-4345 |
| ISSN: | 1935-7524 |
| DOI: | 10.1214/19-EJS1618 |
| Online-Zugang: | Verlag, Volltext: https://doi.org/10.1214/19-EJS1618 Verlag, Volltext: https://projecteuclid.org/euclid.ejs/1572249628 |
| Verfasserangaben: | Christof Schötz |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1688531068 | ||
| 003 | DE-627 | ||
| 005 | 20220817213913.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200127s2019 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1214/19-EJS1618 |2 doi | |
| 035 | |a (DE-627)1688531068 | ||
| 035 | |a (DE-599)KXP1688531068 | ||
| 035 | |a (OCoLC)1341299467 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Schötz, Christof |d 1991- |e VerfasserIn |0 (DE-588)1160782393 |0 (DE-627)1024205932 |0 (DE-576)506187152 |4 aut | |
| 245 | 1 | 0 | |a Convergence rates for the generalized Fréchet mean via the quadruple inequality |c Christof Schötz |
| 264 | 1 | |c 2019 | |
| 300 | |a 66 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 27.01.2020 | ||
| 520 | |a For sets QQ\mathcal{Q} and YY\mathcal{Y}, the generalized Fréchet mean m∈Qm∈Qm\in \mathcal{Q} of a random variable YYY, which has values in YY\mathcal{Y}, is any minimizer of q↦E[c(q,Y)]q↦E[c(q,Y)]q\mapsto \mathbb{E}[\mathfrak{c}(q,Y)], where c:Q×Y→Rc:Q×Y→R\mathfrak{c}\colon \mathcal{Q}\times \mathcal{Y}\to \mathbb{R} is a cost function. There are little restrictions to QQ\mathcal{Q} and YY\mathcal{Y}. In particular, QQ\mathcal{Q} can be a non-Euclidean metric space. We provide convergence rates for the empirical generalized Fréchet mean. Conditions for rates in probability and rates in expectation are given. In contrast to previous results on Fréchet means, we do not require a finite diameter of the QQ\mathcal{Q} or YY\mathcal{Y}. Instead, we assume an inequality, which we call quadruple inequality. It generalizes an otherwise common Lipschitz condition on the cost function. This quadruple inequality is known to hold in Hadamard spaces. We show that it also holds in a suitable way for certain powers of a Hadamard-metric. | ||
| 650 | 4 | |a barycenter | |
| 650 | 4 | |a Fréchet mean | |
| 650 | 4 | |a Hadamard space | |
| 650 | 4 | |a power inequality | |
| 650 | 4 | |a quadruple inequality | |
| 650 | 4 | |a rate of convergence | |
| 773 | 0 | 8 | |i Enthalten in |t Electronic journal of statistics |d Ithaca, NY : Cornell University Library, 2007 |g 13(2019), 2, Seite 4280-4345 |h Online-Ressource |w (DE-627)538998830 |w (DE-600)2381001-4 |w (DE-576)28134714X |x 1935-7524 |7 nnas |a Convergence rates for the generalized Fréchet mean via the quadruple inequality |
| 773 | 1 | 8 | |g volume:13 |g year:2019 |g number:2 |g pages:4280-4345 |g extent:66 |a Convergence rates for the generalized Fréchet mean via the quadruple inequality |
| 856 | 4 | 0 | |u https://doi.org/10.1214/19-EJS1618 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://projecteuclid.org/euclid.ejs/1572249628 |x Verlag |x Resolving-System |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200127 | ||
| 993 | |a Article | ||
| 994 | |a 2019 | ||
| 998 | |g 1160782393 |a Schötz, Christof |m 1160782393:Schötz, Christof |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PS1160782393 |e 110200PS1160782393 |e 110000PS1160782393 |e 110400PS1160782393 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1688531068 |e 3582509958 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title_sort":"Convergence rates for the generalized Fréchet mean via the quadruple inequality","title":"Convergence rates for the generalized Fréchet mean via the quadruple inequality"}],"person":[{"display":"Schötz, Christof","roleDisplay":"VerfasserIn","role":"aut","family":"Schötz","given":"Christof"}],"language":["eng"],"recId":"1688531068","note":["Gesehen am 27.01.2020"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"doi":["10.1214/19-EJS1618"],"eki":["1688531068"]},"origin":[{"dateIssuedDisp":"2019","dateIssuedKey":"2019"}],"name":{"displayForm":["Christof Schötz"]},"relHost":[{"id":{"issn":["1935-7524"],"zdb":["2381001-4"],"eki":["538998830"]},"origin":[{"publisher":"Cornell University Library","dateIssuedKey":"2007","dateIssuedDisp":"2007-","publisherPlace":"Ithaca, NY"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Electronic journal of statistics","subtitle":"EJS","title":"Electronic journal of statistics"}],"recId":"538998830","language":["eng"],"disp":"Convergence rates for the generalized Fréchet mean via the quadruple inequalityElectronic journal of statistics","type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"year":"2019","issue":"2","pages":"4280-4345","text":"13(2019), 2, Seite 4280-4345","volume":"13","extent":"66"},"titleAlt":[{"title":"EJS"}],"pubHistory":["1.2007 -"]}],"physDesc":[{"extent":"66 S."}]} | ||
| SRT | |a SCHOETZCHRCONVERGENC2019 | ||