Convergence rates for the generalized Fréchet mean via the quadruple inequality

For sets QQ\mathcal{Q} and YY\mathcal{Y}, the generalized Fréchet mean m∈Qm∈Qm\in \mathcal{Q} of a random variable YYY, which has values in YY\mathcal{Y}, is any minimizer of q↦E[c(q,Y)]q↦E[c(q,Y)]q\mapsto \mathbb{E}[\mathfrak{c}(q,Y)], where c:Q×Y→Rc:Q×Y→R\mathfrak{c}\colon \mathcal{Q}\times \math...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Schötz, Christof (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2019
In: Electronic journal of statistics
Year: 2019, Jahrgang: 13, Heft: 2, Pages: 4280-4345
ISSN:1935-7524
DOI:10.1214/19-EJS1618
Online-Zugang:Verlag, Volltext: https://doi.org/10.1214/19-EJS1618
Verlag, Volltext: https://projecteuclid.org/euclid.ejs/1572249628
Volltext
Verfasserangaben:Christof Schötz

MARC

LEADER 00000caa a2200000 c 4500
001 1688531068
003 DE-627
005 20220817213913.0
007 cr uuu---uuuuu
008 200127s2019 xx |||||o 00| ||eng c
024 7 |a 10.1214/19-EJS1618  |2 doi 
035 |a (DE-627)1688531068 
035 |a (DE-599)KXP1688531068 
035 |a (OCoLC)1341299467 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Schötz, Christof  |d 1991-  |e VerfasserIn  |0 (DE-588)1160782393  |0 (DE-627)1024205932  |0 (DE-576)506187152  |4 aut 
245 1 0 |a Convergence rates for the generalized Fréchet mean via the quadruple inequality  |c Christof Schötz 
264 1 |c 2019 
300 |a 66 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.01.2020 
520 |a For sets QQ\mathcal{Q} and YY\mathcal{Y}, the generalized Fréchet mean m∈Qm∈Qm\in \mathcal{Q} of a random variable YYY, which has values in YY\mathcal{Y}, is any minimizer of q↦E[c(q,Y)]q↦E[c(q,Y)]q\mapsto \mathbb{E}[\mathfrak{c}(q,Y)], where c:Q×Y→Rc:Q×Y→R\mathfrak{c}\colon \mathcal{Q}\times \mathcal{Y}\to \mathbb{R} is a cost function. There are little restrictions to QQ\mathcal{Q} and YY\mathcal{Y}. In particular, QQ\mathcal{Q} can be a non-Euclidean metric space. We provide convergence rates for the empirical generalized Fréchet mean. Conditions for rates in probability and rates in expectation are given. In contrast to previous results on Fréchet means, we do not require a finite diameter of the QQ\mathcal{Q} or YY\mathcal{Y}. Instead, we assume an inequality, which we call quadruple inequality. It generalizes an otherwise common Lipschitz condition on the cost function. This quadruple inequality is known to hold in Hadamard spaces. We show that it also holds in a suitable way for certain powers of a Hadamard-metric. 
650 4 |a barycenter 
650 4 |a Fréchet mean 
650 4 |a Hadamard space 
650 4 |a power inequality 
650 4 |a quadruple inequality 
650 4 |a rate of convergence 
773 0 8 |i Enthalten in  |t Electronic journal of statistics  |d Ithaca, NY : Cornell University Library, 2007  |g 13(2019), 2, Seite 4280-4345  |h Online-Ressource  |w (DE-627)538998830  |w (DE-600)2381001-4  |w (DE-576)28134714X  |x 1935-7524  |7 nnas  |a Convergence rates for the generalized Fréchet mean via the quadruple inequality 
773 1 8 |g volume:13  |g year:2019  |g number:2  |g pages:4280-4345  |g extent:66  |a Convergence rates for the generalized Fréchet mean via the quadruple inequality 
856 4 0 |u https://doi.org/10.1214/19-EJS1618  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://projecteuclid.org/euclid.ejs/1572249628  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20200127 
993 |a Article 
994 |a 2019 
998 |g 1160782393  |a Schötz, Christof  |m 1160782393:Schötz, Christof  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PS1160782393  |e 110200PS1160782393  |e 110000PS1160782393  |e 110400PS1160782393  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j  |y j 
999 |a KXP-PPN1688531068  |e 3582509958 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Convergence rates for the generalized Fréchet mean via the quadruple inequality","title":"Convergence rates for the generalized Fréchet mean via the quadruple inequality"}],"person":[{"display":"Schötz, Christof","roleDisplay":"VerfasserIn","role":"aut","family":"Schötz","given":"Christof"}],"language":["eng"],"recId":"1688531068","note":["Gesehen am 27.01.2020"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"doi":["10.1214/19-EJS1618"],"eki":["1688531068"]},"origin":[{"dateIssuedDisp":"2019","dateIssuedKey":"2019"}],"name":{"displayForm":["Christof Schötz"]},"relHost":[{"id":{"issn":["1935-7524"],"zdb":["2381001-4"],"eki":["538998830"]},"origin":[{"publisher":"Cornell University Library","dateIssuedKey":"2007","dateIssuedDisp":"2007-","publisherPlace":"Ithaca, NY"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Electronic journal of statistics","subtitle":"EJS","title":"Electronic journal of statistics"}],"recId":"538998830","language":["eng"],"disp":"Convergence rates for the generalized Fréchet mean via the quadruple inequalityElectronic journal of statistics","type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"year":"2019","issue":"2","pages":"4280-4345","text":"13(2019), 2, Seite 4280-4345","volume":"13","extent":"66"},"titleAlt":[{"title":"EJS"}],"pubHistory":["1.2007 -"]}],"physDesc":[{"extent":"66 S."}]} 
SRT |a SCHOETZCHRCONVERGENC2019