Predicting response to pembrolizumab in metastatic melanoma by a new personalization algorithm

At present, immune checkpoint inhibitors, such as pembrolizumab, are widely used in the therapy of advanced non-resectable melanoma, as they induce more durable responses than other available treatments. However, the overall response rate does not exceed 50% and, considering the high costs and low l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tsur, Neta (VerfasserIn) , Vogler, Nils (VerfasserIn) , Utikal, Jochen (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 07 October 2019
In: Journal of translational medicine
Year: 2019, Jahrgang: 17, Pages: 1-15
ISSN:1479-5876
DOI:10.1186/s12967-019-2081-2
Online-Zugang:Verlag, Volltext: https://doi.org/10.1186/s12967-019-2081-2
Verlag: https://doi.org/10.1186/s12967-019-2081-2
Volltext
Verfasserangaben:Neta Tsur, Yuri Kogan, Evgenia Avizov-Khodak, Désirée Vaeth, Nils Vogler, Jochen Utikal, Michal Lotem & Zvia Agur
Beschreibung
Zusammenfassung:At present, immune checkpoint inhibitors, such as pembrolizumab, are widely used in the therapy of advanced non-resectable melanoma, as they induce more durable responses than other available treatments. However, the overall response rate does not exceed 50% and, considering the high costs and low life expectancy of nonresponding patients, there is a need to select potential responders before therapy. Our aim was to develop a new personalization algorithm which could be beneficial in the clinical setting for predicting time to disease progression under pembrolizumab treatment.
Beschreibung:Gesehen am 27.01.2020
Beschreibung:Online Resource
ISSN:1479-5876
DOI:10.1186/s12967-019-2081-2