Globally optimal segmentation of cell nuclei in fluorescence microscopy images using shape and intensity information

Accurate and efficient segmentation of cell nuclei in fluorescence microscopy images plays a key role in many biological studies. Besides coping with image noise and other imaging artifacts, the separation of touching and partially overlapping cell nuclei is a major challenge. To address this, we in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kostrykin, Leonid (VerfasserIn) , Schnörr, Christoph (VerfasserIn) , Rohr, Karl (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 19 July 2019
In: Medical image analysis
Year: 2019, Jahrgang: 58
ISSN:1361-8423
DOI:10.1016/j.media.2019.101536
Online-Zugang:Verlag, Volltext: https://doi.org/10.1016/j.media.2019.101536
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S1361841518307928
Volltext
Verfasserangaben:L. Kostrykin, C. Schnörr, K. Rohr

MARC

LEADER 00000caa a2200000 c 4500
001 1688657983
003 DE-627
005 20230427060344.0
007 cr uuu---uuuuu
008 200128s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.media.2019.101536  |2 doi 
035 |a (DE-627)1688657983 
035 |a (DE-599)KXP1688657983 
035 |a (OCoLC)1341299698 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Kostrykin, Leonid  |d 1987-  |e VerfasserIn  |0 (DE-588)1203723342  |0 (DE-627)1688747303  |4 aut 
245 1 0 |a Globally optimal segmentation of cell nuclei in fluorescence microscopy images using shape and intensity information  |c L. Kostrykin, C. Schnörr, K. Rohr 
264 1 |c 19 July 2019 
300 |a 6 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 29.01.2020 
520 |a Accurate and efficient segmentation of cell nuclei in fluorescence microscopy images plays a key role in many biological studies. Besides coping with image noise and other imaging artifacts, the separation of touching and partially overlapping cell nuclei is a major challenge. To address this, we introduce a globally optimal model-based approach for cell nuclei segmentation which jointly exploits shape and intensity information. Our approach is based on implicitly parameterized shape models, and we propose single-object and multi-object schemes. In the single-object case, the used shape parameterization leads to convex energies which can be directly minimized without requiring approximation. The multi-object scheme is based on multiple collaborating shapes and has the advantage that prior detection of individual cell nuclei is not needed. This scheme performs joint segmentation and cluster splitting. We describe an energy minimization scheme which converges close to global optima and exploits convex optimization such that our approach does not depend on the initialization nor suffers from local energy minima. The proposed approach is robust and computationally efficient. In contrast, previous shape-based approaches for cell segmentation either are computationally expensive, not globally optimal, or do not jointly exploit shape and intensity information. We successfully applied our approach to fluorescence microscopy images of five different cell types and performed a quantitative comparison with previous methods. 
650 4 |a Cell segmentation 
650 4 |a Cell-cluster splitting 
650 4 |a Convex optimization 
650 4 |a Fluorescence microscopy 
650 4 |a Global energy minimization 
650 4 |a Model fitting 
700 1 |a Schnörr, Christoph  |e VerfasserIn  |0 (DE-588)1023033348  |0 (DE-627)717351017  |0 (DE-576)168404540  |4 aut 
700 1 |a Rohr, Karl  |e VerfasserIn  |0 (DE-588)137474466  |0 (DE-627)695829440  |0 (DE-576)303788593  |4 aut 
773 0 8 |i Enthalten in  |t Medical image analysis  |d Amsterdam [u.a.] : Elsevier Science, 1996  |g 58(2019) Artikel-Nummer 101536, 15 Seiten  |h Online-Ressource  |w (DE-627)306365081  |w (DE-600)1497450-2  |w (DE-576)091204941  |x 1361-8423  |7 nnas  |a Globally optimal segmentation of cell nuclei in fluorescence microscopy images using shape and intensity information 
773 1 8 |g volume:58  |g year:2019  |g extent:6  |a Globally optimal segmentation of cell nuclei in fluorescence microscopy images using shape and intensity information 
856 4 0 |u https://doi.org/10.1016/j.media.2019.101536  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S1361841518307928  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20200128 
993 |a Article 
994 |a 2019 
998 |g 137474466  |a Rohr, Karl  |m 137474466:Rohr, Karl  |d 160000  |d 160100  |e 160000PR137474466  |e 160100PR137474466  |k 0/160000/  |k 1/160000/160100/  |p 3  |y j 
998 |g 1023033348  |a Schnörr, Christoph  |m 1023033348:Schnörr, Christoph  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PS1023033348  |e 110200PS1023033348  |e 110000PS1023033348  |e 110400PS1023033348  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 2 
998 |g 1203723342  |a Kostrykin, Leonid  |m 1203723342:Kostrykin, Leonid  |d 700000  |d 708000  |e 700000PK1203723342  |e 708000PK1203723342  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN1688657983  |e 3582875539 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"19 July 2019"}],"name":{"displayForm":["L. Kostrykin, C. Schnörr, K. Rohr"]},"recId":"1688657983","note":["Gesehen am 29.01.2020"],"id":{"eki":["1688657983"],"doi":["10.1016/j.media.2019.101536"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"physDesc":[{"extent":"6 S."}],"relHost":[{"origin":[{"publisher":"Elsevier Science","dateIssuedDisp":"1996-","dateIssuedKey":"1996","publisherPlace":"Amsterdam [u.a.]"}],"titleAlt":[{"title":"Medical image analysis online"}],"recId":"306365081","id":{"zdb":["1497450-2"],"issn":["1361-8423"],"eki":["306365081"]},"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"extent":"6","year":"2019","volume":"58","text":"58(2019) Artikel-Nummer 101536, 15 Seiten"},"pubHistory":["1.1996/97 -"],"disp":"Globally optimal segmentation of cell nuclei in fluorescence microscopy images using shape and intensity informationMedical image analysis","note":["Gesehen am 16.05.23"],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Medical image analysis","title_sort":"Medical image analysis"}],"language":["eng"]}],"title":[{"title_sort":"Globally optimal segmentation of cell nuclei in fluorescence microscopy images using shape and intensity information","title":"Globally optimal segmentation of cell nuclei in fluorescence microscopy images using shape and intensity information"}],"language":["eng"],"person":[{"family":"Kostrykin","given":"Leonid","display":"Kostrykin, Leonid","role":"aut"},{"given":"Christoph","family":"Schnörr","role":"aut","display":"Schnörr, Christoph"},{"role":"aut","display":"Rohr, Karl","given":"Karl","family":"Rohr"}]} 
SRT |a KOSTRYKINLGLOBALLYOP1920