Nonparametric inference for continuous-time event counting and link-based dynamic network models
A flexible approach for modeling both dynamic event counting and dynamic link-based networks based on counting processes is proposed, and estimation in these models is studied. We consider nonparametric likelihood based estimation of parameter functions via kernel smoothing. The asymptotic behavior...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
21 August 2019
|
| In: |
Electronic journal of statistics
Year: 2019, Jahrgang: 13, Heft: 2, Pages: 2764-2829 |
| ISSN: | 1935-7524 |
| DOI: | 10.1214/19-EJS1588 |
| Online-Zugang: | Verlag, Volltext: https://doi.org/10.1214/19-EJS1588 Verlag, Volltext: https://projecteuclid.org/euclid.ejs/1566353062 |
| Verfasserangaben: | Alexander Kreiß, Enno Mammen, Wolfgang Polonik |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1689114665 | ||
| 003 | DE-627 | ||
| 005 | 20220817221333.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200203s2019 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1214/19-EJS1588 |2 doi | |
| 035 | |a (DE-627)1689114665 | ||
| 035 | |a (DE-599)KXP1689114665 | ||
| 035 | |a (OCoLC)1341303439 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Kreiß, Alexander |d 1989- |e VerfasserIn |0 (DE-588)1151339806 |0 (DE-627)1011577992 |0 (DE-576)497605724 |4 aut | |
| 245 | 1 | 0 | |a Nonparametric inference for continuous-time event counting and link-based dynamic network models |c Alexander Kreiß, Enno Mammen, Wolfgang Polonik |
| 264 | 1 | |c 21 August 2019 | |
| 300 | |a 66 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 03.02.2020 | ||
| 520 | |a A flexible approach for modeling both dynamic event counting and dynamic link-based networks based on counting processes is proposed, and estimation in these models is studied. We consider nonparametric likelihood based estimation of parameter functions via kernel smoothing. The asymptotic behavior of these estimators is rigorously analyzed in an asymptotic framework where the number of nodes tends to infinity. The finite sample performance of the estimators is illustrated through an empirical analysis of bike share data. | ||
| 650 | 4 | |a Asymptotic normality | |
| 650 | 4 | |a counting processes | |
| 650 | 4 | |a event counting | |
| 650 | 4 | |a local likelihood estimation | |
| 650 | 4 | |a modelling dependence | |
| 700 | 1 | |a Mammen, Enno |d 1955- |e VerfasserIn |0 (DE-588)170668606 |0 (DE-627)060788658 |0 (DE-576)13153159X |4 aut | |
| 700 | 1 | |a Polonik, Wolfgang |e VerfasserIn |0 (DE-588)105122523X |0 (DE-627)785875263 |0 (DE-576)405981805 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Electronic journal of statistics |d Ithaca, NY : Cornell University Library, 2007 |g 13(2019), 2, Seite 2764-2829 |h Online-Ressource |w (DE-627)538998830 |w (DE-600)2381001-4 |w (DE-576)28134714X |x 1935-7524 |7 nnas |a Nonparametric inference for continuous-time event counting and link-based dynamic network models |
| 773 | 1 | 8 | |g volume:13 |g year:2019 |g number:2 |g pages:2764-2829 |g extent:66 |a Nonparametric inference for continuous-time event counting and link-based dynamic network models |
| 856 | 4 | 0 | |u https://doi.org/10.1214/19-EJS1588 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://projecteuclid.org/euclid.ejs/1566353062 |x Verlag |x Resolving-System |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200203 | ||
| 993 | |a Article | ||
| 994 | |a 2019 | ||
| 998 | |g 170668606 |a Mammen, Enno |m 170668606:Mammen, Enno |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PM170668606 |e 110200PM170668606 |e 110000PM170668606 |e 110400PM170668606 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 2 | ||
| 998 | |g 1151339806 |a Kreiß, Alexander |m 1151339806:Kreiß, Alexander |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PK1151339806 |e 110200PK1151339806 |e 110000PK1151339806 |e 110400PK1151339806 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1689114665 |e 3586962258 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"note":["Gesehen am 03.02.2020"],"physDesc":[{"extent":"66 S."}],"relHost":[{"type":{"media":"Online-Ressource","bibl":"periodical"},"physDesc":[{"extent":"Online-Ressource"}],"part":{"volume":"13","text":"13(2019), 2, Seite 2764-2829","extent":"66","issue":"2","year":"2019","pages":"2764-2829"},"language":["eng"],"disp":"Nonparametric inference for continuous-time event counting and link-based dynamic network modelsElectronic journal of statistics","titleAlt":[{"title":"EJS"}],"title":[{"title_sort":"Electronic journal of statistics","subtitle":"EJS","title":"Electronic journal of statistics"}],"id":{"issn":["1935-7524"],"zdb":["2381001-4"],"eki":["538998830"]},"recId":"538998830","origin":[{"dateIssuedDisp":"2007-","publisherPlace":"Ithaca, NY","publisher":"Cornell University Library","dateIssuedKey":"2007"}],"pubHistory":["1.2007 -"]}],"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"21 August 2019"}],"title":[{"title_sort":"Nonparametric inference for continuous-time event counting and link-based dynamic network models","title":"Nonparametric inference for continuous-time event counting and link-based dynamic network models"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"role":"aut","family":"Kreiß","given":"Alexander","roleDisplay":"VerfasserIn","display":"Kreiß, Alexander"},{"role":"aut","family":"Mammen","roleDisplay":"VerfasserIn","given":"Enno","display":"Mammen, Enno"},{"role":"aut","family":"Polonik","roleDisplay":"VerfasserIn","display":"Polonik, Wolfgang","given":"Wolfgang"}],"name":{"displayForm":["Alexander Kreiß, Enno Mammen, Wolfgang Polonik"]},"id":{"doi":["10.1214/19-EJS1588"],"eki":["1689114665"]},"recId":"1689114665"} | ||
| SRT | |a KREISSALEXNONPARAMET2120 | ||