Nonparametric inference for continuous-time event counting and link-based dynamic network models

A flexible approach for modeling both dynamic event counting and dynamic link-based networks based on counting processes is proposed, and estimation in these models is studied. We consider nonparametric likelihood based estimation of parameter functions via kernel smoothing. The asymptotic behavior...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kreiß, Alexander (VerfasserIn) , Mammen, Enno (VerfasserIn) , Polonik, Wolfgang (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 21 August 2019
In: Electronic journal of statistics
Year: 2019, Jahrgang: 13, Heft: 2, Pages: 2764-2829
ISSN:1935-7524
DOI:10.1214/19-EJS1588
Online-Zugang:Verlag, Volltext: https://doi.org/10.1214/19-EJS1588
Verlag, Volltext: https://projecteuclid.org/euclid.ejs/1566353062
Volltext
Verfasserangaben:Alexander Kreiß, Enno Mammen, Wolfgang Polonik

MARC

LEADER 00000caa a2200000 c 4500
001 1689114665
003 DE-627
005 20220817221333.0
007 cr uuu---uuuuu
008 200203s2019 xx |||||o 00| ||eng c
024 7 |a 10.1214/19-EJS1588  |2 doi 
035 |a (DE-627)1689114665 
035 |a (DE-599)KXP1689114665 
035 |a (OCoLC)1341303439 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Kreiß, Alexander  |d 1989-  |e VerfasserIn  |0 (DE-588)1151339806  |0 (DE-627)1011577992  |0 (DE-576)497605724  |4 aut 
245 1 0 |a Nonparametric inference for continuous-time event counting and link-based dynamic network models  |c Alexander Kreiß, Enno Mammen, Wolfgang Polonik 
264 1 |c 21 August 2019 
300 |a 66 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 03.02.2020 
520 |a A flexible approach for modeling both dynamic event counting and dynamic link-based networks based on counting processes is proposed, and estimation in these models is studied. We consider nonparametric likelihood based estimation of parameter functions via kernel smoothing. The asymptotic behavior of these estimators is rigorously analyzed in an asymptotic framework where the number of nodes tends to infinity. The finite sample performance of the estimators is illustrated through an empirical analysis of bike share data. 
650 4 |a Asymptotic normality 
650 4 |a counting processes 
650 4 |a event counting 
650 4 |a local likelihood estimation 
650 4 |a modelling dependence 
700 1 |a Mammen, Enno  |d 1955-  |e VerfasserIn  |0 (DE-588)170668606  |0 (DE-627)060788658  |0 (DE-576)13153159X  |4 aut 
700 1 |a Polonik, Wolfgang  |e VerfasserIn  |0 (DE-588)105122523X  |0 (DE-627)785875263  |0 (DE-576)405981805  |4 aut 
773 0 8 |i Enthalten in  |t Electronic journal of statistics  |d Ithaca, NY : Cornell University Library, 2007  |g 13(2019), 2, Seite 2764-2829  |h Online-Ressource  |w (DE-627)538998830  |w (DE-600)2381001-4  |w (DE-576)28134714X  |x 1935-7524  |7 nnas  |a Nonparametric inference for continuous-time event counting and link-based dynamic network models 
773 1 8 |g volume:13  |g year:2019  |g number:2  |g pages:2764-2829  |g extent:66  |a Nonparametric inference for continuous-time event counting and link-based dynamic network models 
856 4 0 |u https://doi.org/10.1214/19-EJS1588  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://projecteuclid.org/euclid.ejs/1566353062  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20200203 
993 |a Article 
994 |a 2019 
998 |g 170668606  |a Mammen, Enno  |m 170668606:Mammen, Enno  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PM170668606  |e 110200PM170668606  |e 110000PM170668606  |e 110400PM170668606  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 2 
998 |g 1151339806  |a Kreiß, Alexander  |m 1151339806:Kreiß, Alexander  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PK1151339806  |e 110200PK1151339806  |e 110000PK1151339806  |e 110400PK1151339806  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1689114665  |e 3586962258 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"note":["Gesehen am 03.02.2020"],"physDesc":[{"extent":"66 S."}],"relHost":[{"type":{"media":"Online-Ressource","bibl":"periodical"},"physDesc":[{"extent":"Online-Ressource"}],"part":{"volume":"13","text":"13(2019), 2, Seite 2764-2829","extent":"66","issue":"2","year":"2019","pages":"2764-2829"},"language":["eng"],"disp":"Nonparametric inference for continuous-time event counting and link-based dynamic network modelsElectronic journal of statistics","titleAlt":[{"title":"EJS"}],"title":[{"title_sort":"Electronic journal of statistics","subtitle":"EJS","title":"Electronic journal of statistics"}],"id":{"issn":["1935-7524"],"zdb":["2381001-4"],"eki":["538998830"]},"recId":"538998830","origin":[{"dateIssuedDisp":"2007-","publisherPlace":"Ithaca, NY","publisher":"Cornell University Library","dateIssuedKey":"2007"}],"pubHistory":["1.2007 -"]}],"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"21 August 2019"}],"title":[{"title_sort":"Nonparametric inference for continuous-time event counting and link-based dynamic network models","title":"Nonparametric inference for continuous-time event counting and link-based dynamic network models"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"role":"aut","family":"Kreiß","given":"Alexander","roleDisplay":"VerfasserIn","display":"Kreiß, Alexander"},{"role":"aut","family":"Mammen","roleDisplay":"VerfasserIn","given":"Enno","display":"Mammen, Enno"},{"role":"aut","family":"Polonik","roleDisplay":"VerfasserIn","display":"Polonik, Wolfgang","given":"Wolfgang"}],"name":{"displayForm":["Alexander Kreiß, Enno Mammen, Wolfgang Polonik"]},"id":{"doi":["10.1214/19-EJS1588"],"eki":["1689114665"]},"recId":"1689114665"} 
SRT |a KREISSALEXNONPARAMET2120