Nonparametric inference for continuous-time event counting and link-based dynamic network models

A flexible approach for modeling both dynamic event counting and dynamic link-based networks based on counting processes is proposed, and estimation in these models is studied. We consider nonparametric likelihood based estimation of parameter functions via kernel smoothing. The asymptotic behavior...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kreiß, Alexander (VerfasserIn) , Mammen, Enno (VerfasserIn) , Polonik, Wolfgang (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 21 August 2019
In: Electronic journal of statistics
Year: 2019, Jahrgang: 13, Heft: 2, Pages: 2764-2829
ISSN:1935-7524
DOI:10.1214/19-EJS1588
Online-Zugang:Verlag, Volltext: https://doi.org/10.1214/19-EJS1588
Verlag, Volltext: https://projecteuclid.org/euclid.ejs/1566353062
Volltext
Verfasserangaben:Alexander Kreiß, Enno Mammen, Wolfgang Polonik
Beschreibung
Zusammenfassung:A flexible approach for modeling both dynamic event counting and dynamic link-based networks based on counting processes is proposed, and estimation in these models is studied. We consider nonparametric likelihood based estimation of parameter functions via kernel smoothing. The asymptotic behavior of these estimators is rigorously analyzed in an asymptotic framework where the number of nodes tends to infinity. The finite sample performance of the estimators is illustrated through an empirical analysis of bike share data.
Beschreibung:Gesehen am 03.02.2020
Beschreibung:Online Resource
ISSN:1935-7524
DOI:10.1214/19-EJS1588