Hyperspectral and LiDAR fusion using deep three-stream convolutional neural networks

Recently, convolutional neural networks (CNN) have been intensively investigated for the classification of remote sensing data by extracting invariant and abstract features suitable for classification. In this paper, a novel framework is proposed for the fusion of hyperspectral images and LiDAR-deri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Hao (VerfasserIn) , Ghamisi, Pedram (VerfasserIn) , Sörgel, Uwe (VerfasserIn) , Zhu, Xiaoxiang (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 16 October 2018
In: Remote sensing
Year: 2018, Jahrgang: 10, Heft: 10
ISSN:2072-4292
DOI:10.3390/rs10101649
Online-Zugang:Verlag, Volltext: https://doi.org/10.3390/rs10101649
Verlag, Volltext: https://www.mdpi.com/2072-4292/10/10/1649
Volltext
Verfasserangaben:Hao Li, Pedram Ghamisi, Uwe Soergel and Xiao Xiang Zhu

MARC

LEADER 00000caa a2200000 c 4500
001 1689781378
003 DE-627
005 20220817225734.0
007 cr uuu---uuuuu
008 200211s2018 xx |||||o 00| ||eng c
024 7 |a 10.3390/rs10101649  |2 doi 
035 |a (DE-627)1689781378 
035 |a (DE-599)KXP1689781378 
035 |a (OCoLC)1341305003 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 31  |2 sdnb 
100 1 |a Li, Hao  |e VerfasserIn  |0 (DE-588)1197649670  |0 (DE-627)1679340883  |4 aut 
245 1 0 |a Hyperspectral and LiDAR fusion using deep three-stream convolutional neural networks  |c Hao Li, Pedram Ghamisi, Uwe Soergel and Xiao Xiang Zhu 
264 1 |c 16 October 2018 
300 |b Illustrationen 
300 |a 20 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 11.02.2020 
520 |a Recently, convolutional neural networks (CNN) have been intensively investigated for the classification of remote sensing data by extracting invariant and abstract features suitable for classification. In this paper, a novel framework is proposed for the fusion of hyperspectral images and LiDAR-derived elevation data based on CNN and composite kernels. First, extinction profiles are applied to both data sources in order to extract spatial and elevation features from hyperspectral and LiDAR-derived data, respectively. Second, a three-stream CNN is designed to extract informative spectral, spatial, and elevation features individually from both available sources. The combination of extinction profiles and CNN features enables us to jointly benefit from low-level and high-level features to improve classification performance. To fuse the heterogeneous spectral, spatial, and elevation features extracted by CNN, instead of a simple stacking strategy, a multi-sensor composite kernels (MCK) scheme is designed. This scheme helps us to achieve higher spectral, spatial, and elevation separability of the extracted features and effectively perform multi-sensor data fusion in kernel space. In this context, a support vector machine and extreme learning machine with their composite kernels version are employed to produce the final classification result. The proposed framework is carried out on two widely used data sets with different characteristics: an urban data set captured over Houston, USA, and a rural data set captured over Trento, Italy. The proposed framework yields the highest OA of 92 . 57 % and 97 . 91 % for Houston and Trento data sets. Experimental results confirm that the proposed fusion framework can produce competitive results in both urban and rural areas in terms of classification accuracy, and significantly mitigate the salt and pepper noise in classification maps. 
650 4 |a composite kernels 
650 4 |a convolutional neural networks (CNN) 
650 4 |a data fusion 
650 4 |a extinction profiles (EPs) 
650 4 |a feature extraction (FE) 
700 1 |a Ghamisi, Pedram  |e VerfasserIn  |0 (DE-588)1080244328  |0 (DE-627)844076678  |0 (DE-576)434889962  |4 aut 
700 1 |a Sörgel, Uwe  |d 1969-  |e VerfasserIn  |0 (DE-588)12495491X  |0 (DE-627)706746392  |0 (DE-576)294587527  |4 aut 
700 1 |a Zhu, Xiaoxiang  |d 1984-  |e VerfasserIn  |0 (DE-588)1013459822  |0 (DE-627)66572800X  |0 (DE-576)348363230  |4 aut 
773 0 8 |i Enthalten in  |t Remote sensing  |d Basel : MDPI, 2009  |g 10(2018,10) Artikel-Nummer 1649, Seite 1-20, 20 Seiten  |h Online-Ressource  |w (DE-627)608937916  |w (DE-600)2513863-7  |w (DE-576)310882532  |x 2072-4292  |7 nnas  |a Hyperspectral and LiDAR fusion using deep three-stream convolutional neural networks 
773 1 8 |g volume:10  |g year:2018  |g number:10  |g extent:20  |a Hyperspectral and LiDAR fusion using deep three-stream convolutional neural networks 
856 4 0 |u https://doi.org/10.3390/rs10101649  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://www.mdpi.com/2072-4292/10/10/1649  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20200211 
993 |a Article 
994 |a 2018 
998 |g 1197649670  |a Li, Hao  |m 1197649670:Li, Hao  |d 120000  |d 120700  |e 120000PL1197649670  |e 120700PL1197649670  |k 0/120000/  |k 1/120000/120700/  |p 1  |x j 
999 |a KXP-PPN1689781378  |e 3592805215 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Hyperspectral and LiDAR fusion using deep three-stream convolutional neural networksRemote sensing","pubHistory":["1.2009 -"],"note":["Gesehen am 06.09.10"],"part":{"year":"2018","volume":"10","text":"10(2018,10) Artikel-Nummer 1649, Seite 1-20, 20 Seiten","extent":"20","issue":"10"},"language":["eng"],"origin":[{"dateIssuedDisp":"2009-","publisher":"MDPI","publisherPlace":"Basel","dateIssuedKey":"2009"}],"id":{"issn":["2072-4292"],"eki":["608937916"],"zdb":["2513863-7"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Remote sensing","title":"Remote sensing"}],"recId":"608937916","name":{"displayForm":["Molecular Diversity Preservation International (MDPI)"]}}],"origin":[{"dateIssuedDisp":"16 October 2018","dateIssuedKey":"2018"}],"title":[{"title_sort":"Hyperspectral and LiDAR fusion using deep three-stream convolutional neural networks","title":"Hyperspectral and LiDAR fusion using deep three-stream convolutional neural networks"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"eki":["1689781378"],"doi":["10.3390/rs10101649"]},"physDesc":[{"extent":"20 S.","noteIll":"Illustrationen"}],"recId":"1689781378","person":[{"role":"aut","family":"Li","given":"Hao","display":"Li, Hao"},{"family":"Ghamisi","role":"aut","given":"Pedram","display":"Ghamisi, Pedram"},{"given":"Uwe","display":"Sörgel, Uwe","family":"Sörgel","role":"aut"},{"role":"aut","family":"Zhu","given":"Xiaoxiang","display":"Zhu, Xiaoxiang"}],"note":["Gesehen am 11.02.2020"],"name":{"displayForm":["Hao Li, Pedram Ghamisi, Uwe Soergel and Xiao Xiang Zhu"]},"language":["eng"]} 
SRT |a LIHAOGHAMIHYPERSPECT1620