A conjecture on the minimal size of bound states

We conjecture that, in a renormalizable effective quantum field theory where the heaviest stable particle has mass $m$, there are no bound states with radius below $1/m$ (Bound State Conjecture). We are motivated by the (scalar) Weak Gravity Conjecture, which can be read as a statement forbidding ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Freivogel, Ben (VerfasserIn) , Gasenzer, Thomas (VerfasserIn) , Hebecker, Arthur (VerfasserIn) , Leonhardt, Sascha (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 15 Jan 2020
In: Arxiv

Online-Zugang:Verlag, Volltext: http://arxiv.org/abs/1912.09485
Volltext
Verfasserangaben:Ben Freivogel, Thomas Gasenzer, Arthur Hebecker, Sascha Leonhardt

MARC

LEADER 00000caa a2200000 c 4500
001 1690251905
003 DE-627
005 20220817233013.0
007 cr uuu---uuuuu
008 200218s2020 xx |||||o 00| ||eng c
035 |a (DE-627)1690251905 
035 |a (DE-599)KXP1690251905 
035 |a (OCoLC)1341307149 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Freivogel, Ben  |e VerfasserIn  |0 (DE-588)1204947937  |0 (DE-627)1690253436  |4 aut 
245 1 2 |a A conjecture on the minimal size of bound states  |c Ben Freivogel, Thomas Gasenzer, Arthur Hebecker, Sascha Leonhardt 
264 1 |c 15 Jan 2020 
300 |a 42 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 18.02.2020 
520 |a We conjecture that, in a renormalizable effective quantum field theory where the heaviest stable particle has mass $m$, there are no bound states with radius below $1/m$ (Bound State Conjecture). We are motivated by the (scalar) Weak Gravity Conjecture, which can be read as a statement forbidding certain bound states. As we discuss, versions for uncharged particles and their generalizations have shortcomings. This leads us to the suggestion that one should only constrain rather than exclude bound objects. In the gravitational case, the resulting conjecture takes the sharp form of forbidding the adiabatic construction of black holes smaller than $1/m$. But this minimal bound-state radius remains non-trivial as $M_\text{P}\to \infty$, leading us to suspect a feature of QFT rather than a quantum gravity constraint. We find support in a number of examples which we analyze at a parametric level. 
650 4 |a General Relativity and Quantum Cosmology 
650 4 |a High Energy Physics - Theory 
700 1 |a Gasenzer, Thomas  |e VerfasserIn  |0 (DE-588)1019806370  |0 (DE-627)691023727  |0 (DE-576)358820294  |4 aut 
700 1 |a Hebecker, Arthur  |d 1968-  |e VerfasserIn  |0 (DE-588)1020241667  |0 (DE-627)688104770  |0 (DE-576)359736831  |4 aut 
700 1 |a Leonhardt, Sascha  |d 1993-  |e VerfasserIn  |0 (DE-588)1190591049  |0 (DE-627)1669149285  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2020) Artikel-Nummer 1912.09485, 42 Seiten  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a A conjecture on the minimal size of bound states 
773 1 8 |g year:2020  |g extent:42  |a A conjecture on the minimal size of bound states 
856 4 0 |u http://arxiv.org/abs/1912.09485  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20200218 
993 |a Article 
998 |g 1190591049  |a Leonhardt, Sascha  |m 1190591049:Leonhardt, Sascha  |d 130000  |d 130300  |e 130000PL1190591049  |e 130300PL1190591049  |k 0/130000/  |k 1/130000/130300/  |p 4  |y j 
998 |g 1020241667  |a Hebecker, Arthur  |m 1020241667:Hebecker, Arthur  |d 130000  |d 130300  |d 700000  |d 728500  |e 130000PH1020241667  |e 130300PH1020241667  |e 700000PH1020241667  |e 728500PH1020241667  |k 0/130000/  |k 1/130000/130300/  |k 0/700000/  |k 1/700000/728500/  |p 3 
998 |g 1019806370  |a Gasenzer, Thomas  |m 1019806370:Gasenzer, Thomas  |d 130000  |d 130700  |e 130000PG1019806370  |e 130700PG1019806370  |k 0/130000/  |k 1/130000/130700/  |p 2 
999 |a KXP-PPN1690251905  |e 3596369835 
BIB |a Y 
JSO |a {"title":[{"title":"A conjecture on the minimal size of bound states","title_sort":"conjecture on the minimal size of bound states"}],"person":[{"display":"Freivogel, Ben","roleDisplay":"VerfasserIn","role":"aut","family":"Freivogel","given":"Ben"},{"display":"Gasenzer, Thomas","roleDisplay":"VerfasserIn","role":"aut","family":"Gasenzer","given":"Thomas"},{"family":"Hebecker","given":"Arthur","roleDisplay":"VerfasserIn","display":"Hebecker, Arthur","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Leonhardt, Sascha","role":"aut","family":"Leonhardt","given":"Sascha"}],"recId":"1690251905","language":["eng"],"note":["Gesehen am 18.02.2020"],"type":{"bibl":"chapter","media":"Online-Ressource"},"id":{"eki":["1690251905"]},"origin":[{"dateIssuedDisp":"15 Jan 2020","dateIssuedKey":"2020"}],"name":{"displayForm":["Ben Freivogel, Thomas Gasenzer, Arthur Hebecker, Sascha Leonhardt"]},"relHost":[{"recId":"509006531","language":["eng"],"disp":"A conjecture on the minimal size of bound statesArxiv","note":["Gesehen am 28.05.2024"],"type":{"bibl":"edited-book","media":"Online-Ressource"},"part":{"text":"(2020) Artikel-Nummer 1912.09485, 42 Seiten","extent":"42","year":"2020"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"pubHistory":["1991 -"],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991"}]}],"physDesc":[{"extent":"42 S."}]} 
SRT |a FREIVOGELBCONJECTURE1520