A conjecture on the minimal size of bound states
We conjecture that, in a renormalizable effective quantum field theory where the heaviest stable particle has mass $m$, there are no bound states with radius below $1/m$ (Bound State Conjecture). We are motivated by the (scalar) Weak Gravity Conjecture, which can be read as a statement forbidding ce...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
15 Jan 2020
|
| In: |
Arxiv
|
| Online-Zugang: | Verlag, Volltext: http://arxiv.org/abs/1912.09485 |
| Verfasserangaben: | Ben Freivogel, Thomas Gasenzer, Arthur Hebecker, Sascha Leonhardt |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1690251905 | ||
| 003 | DE-627 | ||
| 005 | 20220817233013.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200218s2020 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1690251905 | ||
| 035 | |a (DE-599)KXP1690251905 | ||
| 035 | |a (OCoLC)1341307149 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Freivogel, Ben |e VerfasserIn |0 (DE-588)1204947937 |0 (DE-627)1690253436 |4 aut | |
| 245 | 1 | 2 | |a A conjecture on the minimal size of bound states |c Ben Freivogel, Thomas Gasenzer, Arthur Hebecker, Sascha Leonhardt |
| 264 | 1 | |c 15 Jan 2020 | |
| 300 | |a 42 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 18.02.2020 | ||
| 520 | |a We conjecture that, in a renormalizable effective quantum field theory where the heaviest stable particle has mass $m$, there are no bound states with radius below $1/m$ (Bound State Conjecture). We are motivated by the (scalar) Weak Gravity Conjecture, which can be read as a statement forbidding certain bound states. As we discuss, versions for uncharged particles and their generalizations have shortcomings. This leads us to the suggestion that one should only constrain rather than exclude bound objects. In the gravitational case, the resulting conjecture takes the sharp form of forbidding the adiabatic construction of black holes smaller than $1/m$. But this minimal bound-state radius remains non-trivial as $M_\text{P}\to \infty$, leading us to suspect a feature of QFT rather than a quantum gravity constraint. We find support in a number of examples which we analyze at a parametric level. | ||
| 650 | 4 | |a General Relativity and Quantum Cosmology | |
| 650 | 4 | |a High Energy Physics - Theory | |
| 700 | 1 | |a Gasenzer, Thomas |e VerfasserIn |0 (DE-588)1019806370 |0 (DE-627)691023727 |0 (DE-576)358820294 |4 aut | |
| 700 | 1 | |a Hebecker, Arthur |d 1968- |e VerfasserIn |0 (DE-588)1020241667 |0 (DE-627)688104770 |0 (DE-576)359736831 |4 aut | |
| 700 | 1 | |a Leonhardt, Sascha |d 1993- |e VerfasserIn |0 (DE-588)1190591049 |0 (DE-627)1669149285 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2020) Artikel-Nummer 1912.09485, 42 Seiten |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a A conjecture on the minimal size of bound states |
| 773 | 1 | 8 | |g year:2020 |g extent:42 |a A conjecture on the minimal size of bound states |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1912.09485 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200218 | ||
| 993 | |a Article | ||
| 998 | |g 1190591049 |a Leonhardt, Sascha |m 1190591049:Leonhardt, Sascha |d 130000 |d 130300 |e 130000PL1190591049 |e 130300PL1190591049 |k 0/130000/ |k 1/130000/130300/ |p 4 |y j | ||
| 998 | |g 1020241667 |a Hebecker, Arthur |m 1020241667:Hebecker, Arthur |d 130000 |d 130300 |d 700000 |d 728500 |e 130000PH1020241667 |e 130300PH1020241667 |e 700000PH1020241667 |e 728500PH1020241667 |k 0/130000/ |k 1/130000/130300/ |k 0/700000/ |k 1/700000/728500/ |p 3 | ||
| 998 | |g 1019806370 |a Gasenzer, Thomas |m 1019806370:Gasenzer, Thomas |d 130000 |d 130700 |e 130000PG1019806370 |e 130700PG1019806370 |k 0/130000/ |k 1/130000/130700/ |p 2 | ||
| 999 | |a KXP-PPN1690251905 |e 3596369835 | ||
| BIB | |a Y | ||
| JSO | |a {"title":[{"title":"A conjecture on the minimal size of bound states","title_sort":"conjecture on the minimal size of bound states"}],"person":[{"display":"Freivogel, Ben","roleDisplay":"VerfasserIn","role":"aut","family":"Freivogel","given":"Ben"},{"display":"Gasenzer, Thomas","roleDisplay":"VerfasserIn","role":"aut","family":"Gasenzer","given":"Thomas"},{"family":"Hebecker","given":"Arthur","roleDisplay":"VerfasserIn","display":"Hebecker, Arthur","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Leonhardt, Sascha","role":"aut","family":"Leonhardt","given":"Sascha"}],"recId":"1690251905","language":["eng"],"note":["Gesehen am 18.02.2020"],"type":{"bibl":"chapter","media":"Online-Ressource"},"id":{"eki":["1690251905"]},"origin":[{"dateIssuedDisp":"15 Jan 2020","dateIssuedKey":"2020"}],"name":{"displayForm":["Ben Freivogel, Thomas Gasenzer, Arthur Hebecker, Sascha Leonhardt"]},"relHost":[{"recId":"509006531","language":["eng"],"disp":"A conjecture on the minimal size of bound statesArxiv","note":["Gesehen am 28.05.2024"],"type":{"bibl":"edited-book","media":"Online-Ressource"},"part":{"text":"(2020) Artikel-Nummer 1912.09485, 42 Seiten","extent":"42","year":"2020"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"pubHistory":["1991 -"],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991"}]}],"physDesc":[{"extent":"42 S."}]} | ||
| SRT | |a FREIVOGELBCONJECTURE1520 | ||