Sum-product graphical models

This paper introduces a probabilistic architecture called sum-product graphical model (SPGM). SPGMs represent a class of probability distributions that combines, for the first time, the semantics of probabilistic graphical models (GMs) with the evaluation efficiency of sum-product networks (SPNs): L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Desana, Mattia (VerfasserIn) , Schnörr, Christoph (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2020
In: Machine learning
Year: 2019, Jahrgang: 109, Heft: 1, Pages: 135-173
ISSN:1573-0565
DOI:10.1007/s10994-019-05813-2
Online-Zugang:Resolving-System, Volltext: https://doi.org/10.1007/s10994-019-05813-2
Verlag: https://link.springer.com/article/10.1007%2Fs10994-019-05813-2
Volltext
Verfasserangaben:Mattia Desana, Christoph Schnörr

MARC

LEADER 00000caa a2200000 c 4500
001 1691142573
003 DE-627
005 20220818001827.0
007 cr uuu---uuuuu
008 200227r20202019xx |||||o 00| ||eng c
024 7 |a 10.1007/s10994-019-05813-2  |2 doi 
035 |a (DE-627)1691142573 
035 |a (DE-599)KXP1691142573 
035 |a (OCoLC)1341308442 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Desana, Mattia  |d 1985-  |e VerfasserIn  |0 (DE-588)1173939040  |0 (DE-627)104373449X  |0 (DE-576)515801828  |4 aut 
245 1 0 |a Sum-product graphical models  |c Mattia Desana, Christoph Schnörr 
264 1 |c 2020 
300 |a 39 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published online: 27 June 2019 
500 |a Gesehen am 27.02.2020 
520 |a This paper introduces a probabilistic architecture called sum-product graphical model (SPGM). SPGMs represent a class of probability distributions that combines, for the first time, the semantics of probabilistic graphical models (GMs) with the evaluation efficiency of sum-product networks (SPNs): Like SPNs, SPGMs always enable tractable inference using a class of models that incorporate context specific independence. Like GMs, SPGMs provide a high-level model interpretation in terms of conditional independence assumptions and corresponding factorizations. Thus, this approach provides new connections between the fields of SPNs and GMs, and enables a high-level interpretation of the family of distributions encoded by SPNs. We provide two applications of SPGMs in density estimation with empirical results close to or surpassing state-of-the-art models. The theoretical and practical results demonstrate that jointly exploiting properties of SPNs and GMs is an interesting direction of future research. 
534 |c 2019 
700 1 |a Schnörr, Christoph  |e VerfasserIn  |0 (DE-588)1023033348  |0 (DE-627)717351017  |0 (DE-576)168404540  |4 aut 
773 0 8 |i Enthalten in  |t Machine learning  |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1986  |g 109(2020), 1, Seite 135-173  |h Online-Ressource  |w (DE-627)269539174  |w (DE-600)1475529-4  |w (DE-576)095551743  |x 1573-0565  |7 nnas  |a Sum-product graphical models 
773 1 8 |g volume:109  |g year:2020  |g number:1  |g pages:135-173  |g extent:39  |a Sum-product graphical models 
856 4 0 |u https://doi.org/10.1007/s10994-019-05813-2  |x Resolving-System  |x Verlag  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007%2Fs10994-019-05813-2  |x Verlag 
951 |a AR 
992 |a 20200227 
993 |a Article 
994 |a 2020 
998 |g 1023033348  |a Schnörr, Christoph  |m 1023033348:Schnörr, Christoph  |d 110000  |d 110200  |d 110000  |d 110400  |d 700000  |d 708000  |e 110000PS1023033348  |e 110200PS1023033348  |e 110000PS1023033348  |e 110400PS1023033348  |e 700000PS1023033348  |e 708000PS1023033348  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/708000/  |p 2  |y j 
998 |g 1173939040  |a Desana, Mattia  |m 1173939040:Desana, Mattia  |p 1  |x j 
999 |a KXP-PPN1691142573  |e 3598888554 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Published online: 27 June 2019","Gesehen am 27.02.2020"],"language":["eng"],"recId":"1691142573","person":[{"family":"Desana","given":"Mattia","roleDisplay":"VerfasserIn","display":"Desana, Mattia","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Schnörr, Christoph","role":"aut","family":"Schnörr","given":"Christoph"}],"title":[{"title_sort":"Sum-product graphical models","title":"Sum-product graphical models"}],"physDesc":[{"extent":"39 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1986","publisher":"Springer Science + Business Media B.V ; Kluwer","dateIssuedDisp":"1986-","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]"}],"id":{"issn":["1573-0565"],"eki":["269539174"],"zdb":["1475529-4"]},"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 11.03.05"],"disp":"Sum-product graphical modelsMachine learning","language":["eng"],"recId":"269539174","pubHistory":["1.1986 -"],"part":{"extent":"39","text":"109(2020), 1, Seite 135-173","volume":"109","issue":"1","pages":"135-173","year":"2020"},"title":[{"title_sort":"Machine learning","title":"Machine learning"}]}],"name":{"displayForm":["Mattia Desana, Christoph Schnörr"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"2020"}],"id":{"doi":["10.1007/s10994-019-05813-2"],"eki":["1691142573"]}} 
SRT |a DESANAMATTSUMPRODUCT2020