Sum-product graphical models
This paper introduces a probabilistic architecture called sum-product graphical model (SPGM). SPGMs represent a class of probability distributions that combines, for the first time, the semantics of probabilistic graphical models (GMs) with the evaluation efficiency of sum-product networks (SPNs): L...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2020
|
| In: |
Machine learning
Year: 2019, Jahrgang: 109, Heft: 1, Pages: 135-173 |
| ISSN: | 1573-0565 |
| DOI: | 10.1007/s10994-019-05813-2 |
| Online-Zugang: | Resolving-System, Volltext: https://doi.org/10.1007/s10994-019-05813-2 Verlag: https://link.springer.com/article/10.1007%2Fs10994-019-05813-2 |
| Verfasserangaben: | Mattia Desana, Christoph Schnörr |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1691142573 | ||
| 003 | DE-627 | ||
| 005 | 20220818001827.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200227r20202019xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s10994-019-05813-2 |2 doi | |
| 035 | |a (DE-627)1691142573 | ||
| 035 | |a (DE-599)KXP1691142573 | ||
| 035 | |a (OCoLC)1341308442 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 28 |2 sdnb | ||
| 100 | 1 | |a Desana, Mattia |d 1985- |e VerfasserIn |0 (DE-588)1173939040 |0 (DE-627)104373449X |0 (DE-576)515801828 |4 aut | |
| 245 | 1 | 0 | |a Sum-product graphical models |c Mattia Desana, Christoph Schnörr |
| 264 | 1 | |c 2020 | |
| 300 | |a 39 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Published online: 27 June 2019 | ||
| 500 | |a Gesehen am 27.02.2020 | ||
| 520 | |a This paper introduces a probabilistic architecture called sum-product graphical model (SPGM). SPGMs represent a class of probability distributions that combines, for the first time, the semantics of probabilistic graphical models (GMs) with the evaluation efficiency of sum-product networks (SPNs): Like SPNs, SPGMs always enable tractable inference using a class of models that incorporate context specific independence. Like GMs, SPGMs provide a high-level model interpretation in terms of conditional independence assumptions and corresponding factorizations. Thus, this approach provides new connections between the fields of SPNs and GMs, and enables a high-level interpretation of the family of distributions encoded by SPNs. We provide two applications of SPGMs in density estimation with empirical results close to or surpassing state-of-the-art models. The theoretical and practical results demonstrate that jointly exploiting properties of SPNs and GMs is an interesting direction of future research. | ||
| 534 | |c 2019 | ||
| 700 | 1 | |a Schnörr, Christoph |e VerfasserIn |0 (DE-588)1023033348 |0 (DE-627)717351017 |0 (DE-576)168404540 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Machine learning |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1986 |g 109(2020), 1, Seite 135-173 |h Online-Ressource |w (DE-627)269539174 |w (DE-600)1475529-4 |w (DE-576)095551743 |x 1573-0565 |7 nnas |a Sum-product graphical models |
| 773 | 1 | 8 | |g volume:109 |g year:2020 |g number:1 |g pages:135-173 |g extent:39 |a Sum-product graphical models |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s10994-019-05813-2 |x Resolving-System |x Verlag |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007%2Fs10994-019-05813-2 |x Verlag |
| 951 | |a AR | ||
| 992 | |a 20200227 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1023033348 |a Schnörr, Christoph |m 1023033348:Schnörr, Christoph |d 110000 |d 110200 |d 110000 |d 110400 |d 700000 |d 708000 |e 110000PS1023033348 |e 110200PS1023033348 |e 110000PS1023033348 |e 110400PS1023033348 |e 700000PS1023033348 |e 708000PS1023033348 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/708000/ |p 2 |y j | ||
| 998 | |g 1173939040 |a Desana, Mattia |m 1173939040:Desana, Mattia |p 1 |x j | ||
| 999 | |a KXP-PPN1691142573 |e 3598888554 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Published online: 27 June 2019","Gesehen am 27.02.2020"],"language":["eng"],"recId":"1691142573","person":[{"family":"Desana","given":"Mattia","roleDisplay":"VerfasserIn","display":"Desana, Mattia","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Schnörr, Christoph","role":"aut","family":"Schnörr","given":"Christoph"}],"title":[{"title_sort":"Sum-product graphical models","title":"Sum-product graphical models"}],"physDesc":[{"extent":"39 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1986","publisher":"Springer Science + Business Media B.V ; Kluwer","dateIssuedDisp":"1986-","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]"}],"id":{"issn":["1573-0565"],"eki":["269539174"],"zdb":["1475529-4"]},"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 11.03.05"],"disp":"Sum-product graphical modelsMachine learning","language":["eng"],"recId":"269539174","pubHistory":["1.1986 -"],"part":{"extent":"39","text":"109(2020), 1, Seite 135-173","volume":"109","issue":"1","pages":"135-173","year":"2020"},"title":[{"title_sort":"Machine learning","title":"Machine learning"}]}],"name":{"displayForm":["Mattia Desana, Christoph Schnörr"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"2020"}],"id":{"doi":["10.1007/s10994-019-05813-2"],"eki":["1691142573"]}} | ||
| SRT | |a DESANAMATTSUMPRODUCT2020 | ||