Visualization of 4D vector field topology

In this paper, we present an approach to the topological analysis of four-dimensional vector fields. In analogy to traditional 2D and 3D vector field topology, we provide a classification and visual representation of critical points, together with a technique for extracting their invariant manifolds...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hofmann, Lutz (VerfasserIn) , Rieck, Bastian (VerfasserIn) , Sadlo, Filip (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 10 July 2018
In: Computer graphics forum
Year: 2018, Jahrgang: 37, Heft: 3, Pages: 301-313
ISSN:1467-8659
DOI:10.1111/cgf.13421
Online-Zugang:Verlag, Volltext: https://doi.org/10.1111/cgf.13421
Verlag, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13421
Volltext
Verfasserangaben:Lutz Hofmann, Bastian Rieck, and Filip Sadlo, Heidelberg University, Germany
Beschreibung
Zusammenfassung:In this paper, we present an approach to the topological analysis of four-dimensional vector fields. In analogy to traditional 2D and 3D vector field topology, we provide a classification and visual representation of critical points, together with a technique for extracting their invariant manifolds. For effective exploration of the resulting four-dimensional structures, we present a 4D camera that provides concise representation by exploiting projection degeneracies, and a 4D clipping approach that avoids self-intersection in the 3D projection. We exemplify the properties and the utility of our approach using specific synthetic cases.
Beschreibung:Gesehen am 03.03.2020
Beschreibung:Online Resource
ISSN:1467-8659
DOI:10.1111/cgf.13421