Equivalences between learning of data and probability distributions, and their applications

Algorithmic learning theory traditionally studies the learnability of effective infinite binary sequences (reals), while recent work by Vitányi and Chater has adapted this framework to the study of learnability of effective probability distributions from random data. We prove that for certain famil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Barmpalias, George (VerfasserIn) , Fang, Nan (VerfasserIn) , Stephan, Frank (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1 August 2018
In: Information and computation
Year: 2018, Jahrgang: 262, Pages: 123-140
ISSN:1090-2651
DOI:10.1016/j.ic.2018.08.001
Online-Zugang:Verlag, Volltext: https://doi.org/10.1016/j.ic.2018.08.001
Verlag: http://www.sciencedirect.com/science/article/pii/S0890540118301172
Volltext
Verfasserangaben:George Barmpalias, Nan Fang, Frank Stephan

MARC

LEADER 00000caa a2200000 c 4500
001 1691541389
003 DE-627
005 20220818004926.0
007 cr uuu---uuuuu
008 200304s2018 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ic.2018.08.001  |2 doi 
035 |a (DE-627)1691541389 
035 |a (DE-599)KXP1691541389 
035 |a (OCoLC)1341309212 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Barmpalias, George  |e VerfasserIn  |4 aut 
245 1 0 |a Equivalences between learning of data and probability distributions, and their applications  |c George Barmpalias, Nan Fang, Frank Stephan 
264 1 |c 1 August 2018 
300 |a 18 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 04.03.2020 
520 |a Algorithmic learning theory traditionally studies the learnability of effective infinite binary sequences (reals), while recent work by Vitányi and Chater has adapted this framework to the study of learnability of effective probability distributions from random data. We prove that for certain families of probability measures that are parametrized by reals, learnability of a subclass of probability measures is equivalent to learnability of the class of the corresponding real parameters. This equivalence allows to transfer results from classical algorithmic theory to learning theory of probability measures. We present a number of such applications, providing many new results regarding EX and BC learnability of classes of measures, thus drawing parallels between the two learning theories. 
700 1 |a Fang, Nan  |d 1991-  |e VerfasserIn  |0 (DE-588)1196037493  |0 (DE-627)1677911077  |4 aut 
700 1 |a Stephan, Frank  |e VerfasserIn  |0 (DE-588)1125914025  |0 (DE-627)880490810  |0 (DE-576)483630047  |4 aut 
773 0 8 |i Enthalten in  |t Information and computation  |d Amsterdam : Elsevier, 1987  |g 262(2018), Seite 123-140  |h Online-Ressource  |w (DE-627)26688170X  |w (DE-600)1468010-5  |w (DE-576)10337308X  |x 1090-2651  |7 nnas  |a Equivalences between learning of data and probability distributions, and their applications 
773 1 8 |g volume:262  |g year:2018  |g pages:123-140  |g extent:18  |a Equivalences between learning of data and probability distributions, and their applications 
856 4 0 |u https://doi.org/10.1016/j.ic.2018.08.001  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0890540118301172  |x Verlag 
951 |a AR 
992 |a 20200304 
993 |a Article 
994 |a 2018 
998 |g 1196037493  |a Fang, Nan  |m 1196037493:Fang, Nan  |d 110000  |d 110300  |e 110000PF1196037493  |e 110300PF1196037493  |k 0/110000/  |k 1/110000/110300/  |p 2 
999 |a KXP-PPN1691541389  |e 3603688791 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"family":"Barmpalias","given":"George","display":"Barmpalias, George","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Fang","given":"Nan","display":"Fang, Nan","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Frank","family":"Stephan","role":"aut","roleDisplay":"VerfasserIn","display":"Stephan, Frank"}],"title":[{"title":"Equivalences between learning of data and probability distributions, and their applications","title_sort":"Equivalences between learning of data and probability distributions, and their applications"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 04.03.2020"],"language":["eng"],"recId":"1691541389","name":{"displayForm":["George Barmpalias, Nan Fang, Frank Stephan"]},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"1 August 2018"}],"id":{"doi":["10.1016/j.ic.2018.08.001"],"eki":["1691541389"]},"physDesc":[{"extent":"18 S."}],"relHost":[{"title":[{"title_sort":"Information and computation","title":"Information and computation"}],"note":["Gesehen am 16.07.13"],"disp":"Equivalences between learning of data and probability distributions, and their applicationsInformation and computation","type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"26688170X","language":["eng"],"pubHistory":["72.1987 - 209.2011; Vol. 210.2012 -"],"part":{"volume":"262","text":"262(2018), Seite 123-140","extent":"18","year":"2018","pages":"123-140"},"origin":[{"publisherPlace":"Amsterdam ; Orlando, Fla.","dateIssuedDisp":"1987-","dateIssuedKey":"1987","publisher":"Elsevier ; Academic Press"}],"id":{"issn":["1090-2651"],"zdb":["1468010-5"],"eki":["26688170X"]},"physDesc":[{"extent":"Online-Ressource"}]}]} 
SRT |a BARMPALIASEQUIVALENC1201