Lefschetz thimbles decomposition for the Hubbard model on the hexagonal lattice

In this paper, we propose a framework for studying the properties of the Lefschetz thimbles decomposition for lattice fermion models approaching the thermodynamic limit. The proposed set of algorithms includes the Schur complement solver and the exact computation of the derivatives of the fermion de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ulybyshev, Maksim (VerfasserIn) , Winterowd, Christopher (VerfasserIn) , Zafeiropoulos, Savvas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 22 January 2020
In: Physical review
Year: 2020, Jahrgang: 101, Heft: 1
ISSN:2470-0029
DOI:10.1103/PhysRevD.101.014508
Online-Zugang:Verlag, Volltext: https://doi.org/10.1103/PhysRevD.101.014508
Verlag: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.014508
Volltext
Verfasserangaben:Maksim Ulybyshev, Christopher Winterowd, and Savvas Zafeiropoulos

MARC

LEADER 00000caa a2200000 c 4500
001 169156592X
003 DE-627
005 20220818005139.0
007 cr uuu---uuuuu
008 200304s2020 xx |||||o 00| ||eng c
024 7 |a 10.1103/PhysRevD.101.014508  |2 doi 
035 |a (DE-627)169156592X 
035 |a (DE-599)KXP169156592X 
035 |a (OCoLC)1341309380 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Ulybyshev, Maksim  |e VerfasserIn  |0 (DE-588)1205837841  |0 (DE-627)1691564656  |4 aut 
245 1 0 |a Lefschetz thimbles decomposition for the Hubbard model on the hexagonal lattice  |c Maksim Ulybyshev, Christopher Winterowd, and Savvas Zafeiropoulos 
264 1 |c 22 January 2020 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 04.03.2020 
520 |a In this paper, we propose a framework for studying the properties of the Lefschetz thimbles decomposition for lattice fermion models approaching the thermodynamic limit. The proposed set of algorithms includes the Schur complement solver and the exact computation of the derivatives of the fermion determinant. It allows us to solve the gradient flow equations taking into account the fermion determinant exactly, with high performance. Being able to do so, we can find both real and complex saddle points and describe the structure of the Lefschetz thimbles decomposition for large enough lattices which allows us to extrapolate our results to the thermodynamic limit. We describe the algorithms for a general lattice fermion model, with emphasis on two widely used types of lattice discretizations for relativistic fermions (staggered and Wilson fermions), as well as on interacting tight-binding models for condensed matter systems. As an example, we apply these algorithms to the Hubbard model on a hexagonal lattice. Several technical improvements allow us to deal with lattice volumes as large as $12\ifmmode\times\else\texttimes\fi{}12$ with ${N}_{\ensuremath{\tau}}=256$ steps in Euclidean time, in order to capture the properties of the thimbles decomposition as the thermodynamic, low-temperature, and continuum limits are approached. Different versions of the Hubbard-Stratonovich (HS) transformation were studied, and we show that the complexity of the thimbles decomposition is very dependent on its specific form. In particular, we provide evidence for the existence of an optimal regime for the hexagonal lattice Hubbard model, with a reduced number of thimbles becoming important in the overall sum. In order to check these findings, we have performed quantum Monte Carlo (QMC) simulations using the gradient flow to deform the integration contour into the complex plane. These calculations were made on small volumes (${N}_{s}=8$ sites in space), albeit still at low temperatures and with the chemical potential tuned to the van Hove singularity, thus entering into a regime where standard QMC techniques exhibit an exponential decay of the average sign. The results are compared versus exact diagonalization, and we demonstrate the importance of choosing an optimal form for the HS transformation for the Hubbard model to avoid issues associated with ergodicity. We compare the residual sign problem with the state-of-the-art BSS (Blankenbecler, Scalapino, and Sugar)-QMC and show that the average sign can be kept substantially higher using the Lefschetz thimbles approach. 
700 1 |a Winterowd, Christopher  |e VerfasserIn  |0 (DE-588)1205838449  |0 (DE-627)169156558X  |4 aut 
700 1 |a Zafeiropoulos, Savvas  |e VerfasserIn  |0 (DE-588)1182055885  |0 (DE-627)1662553145  |4 aut 
773 0 8 |i Enthalten in  |t Physical review  |d Ridge, NY : American Physical Society, 2016  |g 101(2020,1) Artikel-Nummer 014508, 22 Seiten  |h Online-Ressource  |w (DE-627)846313510  |w (DE-600)2844732-3  |w (DE-576)454495811  |x 2470-0029  |7 nnas  |a Lefschetz thimbles decomposition for the Hubbard model on the hexagonal lattice 
773 1 8 |g volume:101  |g year:2020  |g number:1  |g extent:22  |a Lefschetz thimbles decomposition for the Hubbard model on the hexagonal lattice 
856 4 0 |u https://doi.org/10.1103/PhysRevD.101.014508  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.014508  |x Verlag 
951 |a AR 
992 |a 20200304 
993 |a Article 
994 |a 2020 
998 |g 1182055885  |a Zafeiropoulos, Savvas  |m 1182055885:Zafeiropoulos, Savvas  |d 130000  |d 130300  |e 130000PZ1182055885  |e 130300PZ1182055885  |k 0/130000/  |k 1/130000/130300/  |p 3  |y j 
999 |a KXP-PPN169156592X  |e 3603857976 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"recId":"169156592X","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 04.03.2020"],"person":[{"given":"Maksim","family":"Ulybyshev","role":"aut","display":"Ulybyshev, Maksim","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Winterowd, Christopher","roleDisplay":"VerfasserIn","given":"Christopher","family":"Winterowd"},{"role":"aut","display":"Zafeiropoulos, Savvas","roleDisplay":"VerfasserIn","given":"Savvas","family":"Zafeiropoulos"}],"title":[{"title":"Lefschetz thimbles decomposition for the Hubbard model on the hexagonal lattice","title_sort":"Lefschetz thimbles decomposition for the Hubbard model on the hexagonal lattice"}],"relHost":[{"pubHistory":["3rd series, volume 93, number 1 (January 2016)-"],"part":{"text":"101(2020,1) Artikel-Nummer 014508, 22 Seiten","volume":"101","extent":"22","year":"2020","issue":"1"},"titleAlt":[{"title":"Particles, fields, gravitation, and cosmology"}],"disp":"Lefschetz thimbles decomposition for the Hubbard model on the hexagonal latticePhysical review","note":["Gesehen am 14.03.2023"],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"846313510","language":["eng"],"corporate":[{"role":"isb","roleDisplay":"Herausgebendes Organ","display":"American Physical Society"}],"title":[{"title_sort":"Physical review","title":"Physical review"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Ridge, NY","dateIssuedDisp":"2016-","dateIssuedKey":"2016","publisher":"American Physical Society"}],"id":{"issn":["2470-0029"],"eki":["846313510"],"zdb":["2844732-3"]},"name":{"displayForm":["published by American Physical Society"]}}],"physDesc":[{"extent":"22 S."}],"name":{"displayForm":["Maksim Ulybyshev, Christopher Winterowd, and Savvas Zafeiropoulos"]},"id":{"doi":["10.1103/PhysRevD.101.014508"],"eki":["169156592X"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"22 January 2020"}]} 
SRT |a ULYBYSHEVMLEFSCHETZT2220