SL (2, C) group action on cohomological field theories
We introduce the SL(2,C) group action on a partition function of a cohomological field theory via a certain Givental’s action. Restricted to the small phase space we describe the action via the explicit formulae on a CohFT genus g potential. We prove that applied to the total ancestor potential of a...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2018
|
| In: |
Letters in mathematical physics
Year: 2017, Volume: 108, Issue: 1, Pages: 161-183 |
| ISSN: | 1573-0530 |
| DOI: | 10.1007/s11005-017-0995-2 |
| Online Access: | Verlag, Volltext: https://doi.org/10.1007/s11005-017-0995-2 |
| Author Notes: | Alexey Basalaev |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1691742104 | ||
| 003 | DE-627 | ||
| 005 | 20220818005402.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200305r20182017xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s11005-017-0995-2 |2 doi | |
| 035 | |a (DE-627)1691742104 | ||
| 035 | |a (DE-599)KXP1691742104 | ||
| 035 | |a (OCoLC)1341309377 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Basalaev, Alexey |e VerfasserIn |0 (DE-588)1205895981 |0 (DE-627)1691742716 |4 aut | |
| 245 | 1 | 0 | |a SL (2, C) group action on cohomological field theories |c Alexey Basalaev |
| 246 | 3 | 0 | |a two |
| 264 | 1 | |c 2018 | |
| 300 | |a 23 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Published: 09 September 2017 | ||
| 500 | |a Gesehen am 05.03.2020 | ||
| 520 | |a We introduce the SL(2,C) group action on a partition function of a cohomological field theory via a certain Givental’s action. Restricted to the small phase space we describe the action via the explicit formulae on a CohFT genus g potential. We prove that applied to the total ancestor potential of a simple-elliptic singularity the action introduced coincides with the transformation of Milanov–Ruan changing the primitive form (cf. Milanov and Ruan in Gromov–Witten theory of elliptic orbifold P1 and quasi-modular forms, arXiv:1106.2321, 2011). | ||
| 534 | |c 2017 | ||
| 773 | 0 | 8 | |i Enthalten in |t Letters in mathematical physics |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1975 |g 108(2018), 1, Seite 161-183 |h Online-Ressource |w (DE-627)271348208 |w (DE-600)1479697-1 |w (DE-576)102669082 |x 1573-0530 |7 nnas |a SL (2, C) group action on cohomological field theories |
| 773 | 1 | 8 | |g volume:108 |g year:2018 |g number:1 |g pages:161-183 |g extent:23 |a SL (2, C) group action on cohomological field theories |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s11005-017-0995-2 |x Verlag |x Resolving-System |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200305 | ||
| 993 | |a Article | ||
| 994 | |a 2018 | ||
| 998 | |g 1205895981 |a Basalaev, Alexey |m 1205895981:Basalaev, Alexey |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PB1205895981 |e 110100PB1205895981 |e 110000PB1205895981 |e 110400PB1205895981 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1691742104 |e 360397414X | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["271348208"],"zdb":["1479697-1"],"issn":["1573-0530"]},"origin":[{"dateIssuedKey":"1975","publisher":"Springer Science + Business Media B.V ; Kluwer","dateIssuedDisp":"1975-","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]"}],"part":{"year":"2018","issue":"1","pages":"161-183","volume":"108","text":"108(2018), 1, Seite 161-183","extent":"23"},"pubHistory":["1.1975/77 -"],"recId":"271348208","language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"SL (2, C) group action on cohomological field theoriesLetters in mathematical physics","note":["Gesehen am 01.12.05"],"title":[{"title":"Letters in mathematical physics","subtitle":"a journal for the rapid dissemination of short contributions in the field of mathematical physics","title_sort":"Letters in mathematical physics"}]}],"physDesc":[{"extent":"23 S."}],"name":{"displayForm":["Alexey Basalaev"]},"id":{"eki":["1691742104"],"doi":["10.1007/s11005-017-0995-2"]},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"2018"}],"language":["eng"],"recId":"1691742104","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Published: 09 September 2017","Gesehen am 05.03.2020"],"person":[{"display":"Basalaev, Alexey","roleDisplay":"VerfasserIn","role":"aut","family":"Basalaev","given":"Alexey"}],"title":[{"title":"SL (2, C) group action on cohomological field theories","title_sort":"SL (2, C) group action on cohomological field theories"}]} | ||
| SRT | |a BASALAEVALSL2CGROUPA2018 | ||