On quasi-purity of the branch locus

Let k be a field, K/k finitely generated and L/K a finite, separable extension. We show that the existence of a k-valuation on L which ramifies in L/K implies the existence of a normal model X of K and a prime divisor D on the normalization X_L of X in L which ramifies in the scheme morphism X_L → X...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Schmidt, Alexander (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2020
In: Manuscripta mathematica
Year: 2018, Jahrgang: 161, Heft: 3, Pages: 325-331
ISSN:1432-1785
DOI:10.1007/s00229-018-1096-y
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00229-018-1096-y
Volltext
Verfasserangaben:Alexander Schmidt
Beschreibung
Zusammenfassung:Let k be a field, K/k finitely generated and L/K a finite, separable extension. We show that the existence of a k-valuation on L which ramifies in L/K implies the existence of a normal model X of K and a prime divisor D on the normalization X_L of X in L which ramifies in the scheme morphism X_L → X. Assuming the existence of a regular, proper model X of K, this is a straight-forward consequence of the Zariski-Nagata theorem on the purity of the branch locus. We avoid assumptions on resolution of singularities by using M. Temkin’s inseparable local uniformization theorem.
Beschreibung:Published online: 6 December 2018
Gesehen am 06.03.2020
Beschreibung:Online Resource
ISSN:1432-1785
DOI:10.1007/s00229-018-1096-y