On quasi-purity of the branch locus
Let k be a field, K/k finitely generated and L/K a finite, separable extension. We show that the existence of a k-valuation on L which ramifies in L/K implies the existence of a normal model X of K and a prime divisor D on the normalization X_L of X in L which ramifies in the scheme morphism X_L → X...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2020
|
| In: |
Manuscripta mathematica
Year: 2018, Jahrgang: 161, Heft: 3, Pages: 325-331 |
| ISSN: | 1432-1785 |
| DOI: | 10.1007/s00229-018-1096-y |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00229-018-1096-y |
| Verfasserangaben: | Alexander Schmidt |
| Zusammenfassung: | Let k be a field, K/k finitely generated and L/K a finite, separable extension. We show that the existence of a k-valuation on L which ramifies in L/K implies the existence of a normal model X of K and a prime divisor D on the normalization X_L of X in L which ramifies in the scheme morphism X_L → X. Assuming the existence of a regular, proper model X of K, this is a straight-forward consequence of the Zariski-Nagata theorem on the purity of the branch locus. We avoid assumptions on resolution of singularities by using M. Temkin’s inseparable local uniformization theorem. |
|---|---|
| Beschreibung: | Published online: 6 December 2018 Gesehen am 06.03.2020 |
| Beschreibung: | Online Resource |
| ISSN: | 1432-1785 |
| DOI: | 10.1007/s00229-018-1096-y |