Performance evaluation of MHC class-I binding prediction tools based on an experimentally validated MHC-peptide binding data set

Knowing whether a protein can be processed and the resulting peptides presented by major histocompatibility complex (MHC) is highly important for immunotherapy design. MHC ligands can be predicted by in silico peptide-MHC class-I binding prediction algorithms. However, prediction performance differs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bonsack, Maria (VerfasserIn) , Winter, Jan (VerfasserIn) , Tichy, Diana (VerfasserIn) , Blatnik, Renata (VerfasserIn) , Riemer, Angelika (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: March 22, 2019
In: Cancer immunology research
Year: 2019, Jahrgang: 7, Heft: 5, Pages: 719-736
ISSN:2326-6074
DOI:10.1158/2326-6066.CIR-18-0584
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1158/2326-6066.CIR-18-0584
Verlag, lizenzpflichtig, Volltext: https://cancerimmunolres.aacrjournals.org/content/7/5/719
Volltext
Verfasserangaben:Maria Bonsack, Stephanie Hoppe, Jan Winter, Diana Tichy, Christine Zeller, Marius D. Küpper, Eva C. Schitter, Renata Blatnik, and Angelika B. Riemer

MARC

LEADER 00000caa a2200000 c 4500
001 1692356925
003 DE-627
005 20220818012514.0
007 cr uuu---uuuuu
008 200312s2019 xx |||||o 00| ||eng c
024 7 |a 10.1158/2326-6066.CIR-18-0584  |2 doi 
035 |a (DE-627)1692356925 
035 |a (DE-599)KXP1692356925 
035 |a (OCoLC)1341310268 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Bonsack, Maria  |d 1991-  |e VerfasserIn  |0 (DE-588)1204472343  |0 (DE-627)1689802839  |4 aut 
245 1 0 |a Performance evaluation of MHC class-I binding prediction tools based on an experimentally validated MHC-peptide binding data set  |c Maria Bonsack, Stephanie Hoppe, Jan Winter, Diana Tichy, Christine Zeller, Marius D. Küpper, Eva C. Schitter, Renata Blatnik, and Angelika B. Riemer 
246 3 0 |a one 
264 1 |c March 22, 2019 
300 |a 28 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 25.06.2020 
520 |a Knowing whether a protein can be processed and the resulting peptides presented by major histocompatibility complex (MHC) is highly important for immunotherapy design. MHC ligands can be predicted by in silico peptide-MHC class-I binding prediction algorithms. However, prediction performance differs considerably, depending on the selected algorithm, MHC class-I type, and peptide length. We evaluated the prediction performance of 13 algorithms based on binding affinity data of 8- to 11-mer peptides derived from the HPV16 E6 and E7 proteins to the most prevalent human leukocyte antigen (HLA) types. Peptides from high to low predicted binding likelihood were synthesized, and their HLA binding was experimentally verified by in vitro competitive binding assays. Based on the actual binding capacity of the peptides, the performance of prediction algorithms was analyzed by calculating receiver operating characteristics (ROC) and the area under the curve (AROC). No algorithm outperformed others, but different algorithms predicted best for particular HLA types and peptide lengths. The sensitivity, specificity, and accuracy of decision thresholds were calculated. Commonly used decision thresholds yielded only 40% sensitivity. To increase sensitivity, optimal thresholds were calculated, validated, and compared. In order to make maximal use of prediction algorithms available online, we developed MHCcombine, a web application that allows simultaneous querying and output combination of up to 13 prediction algorithms. Taken together, we provide here an evaluation of peptide-MHC class-I binding prediction tools and recommendations to increase prediction sensitivity to extend the number of potential epitopes applicable as targets for immunotherapy. 
700 1 |a Winter, Jan  |d 1986-  |e VerfasserIn  |0 (DE-588)1156489164  |0 (DE-627)1019303050  |0 (DE-576)502212500  |4 aut 
700 1 |a Tichy, Diana  |e VerfasserIn  |0 (DE-588)1028040873  |0 (DE-627)730210081  |0 (DE-576)375518258  |4 aut 
700 1 |a Blatnik, Renata  |e VerfasserIn  |0 (DE-588)1142196372  |0 (DE-627)1001305167  |0 (DE-576)494738626  |4 aut 
700 1 |a Riemer, Angelika  |e VerfasserIn  |0 (DE-588)1167191420  |0 (DE-627)1030878013  |0 (DE-576)511025688  |4 aut 
773 0 8 |i Enthalten in  |t Cancer immunology research  |d Philadelphia, Pa. : AACR, 2013  |g 7(2019), 5, Seite 719-736  |h Online-Ressource  |w (DE-627)767120027  |w (DE-600)2732517-9  |w (DE-576)393437752  |x 2326-6074  |7 nnas  |a Performance evaluation of MHC class-I binding prediction tools based on an experimentally validated MHC-peptide binding data set 
773 1 8 |g volume:7  |g year:2019  |g number:5  |g pages:719-736  |g extent:28  |a Performance evaluation of MHC class-I binding prediction tools based on an experimentally validated MHC-peptide binding data set 
787 0 8 |i Errata  |a American Association for Cancer Research  |t Correction: Performance evaluation of MHC class-I binding prediction tools based on an experimentally validated MHC-peptide binding data set  |d 2019  |w (DE-627)1703310594 
856 4 0 |u https://doi.org/10.1158/2326-6066.CIR-18-0584  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://cancerimmunolres.aacrjournals.org/content/7/5/719  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200312 
993 |a Article 
994 |a 2019 
998 |g 1028040873  |a Tichy, Diana  |m 1028040873:Tichy, Diana  |d 50000  |e 50000PT1028040873  |k 0/50000/  |p 4 
998 |g 1156489164  |a Winter, Jan  |m 1156489164:Winter, Jan  |d 140000  |e 140000PW1156489164  |k 0/140000/  |p 3 
998 |g 1204472343  |a Bonsack, Maria  |m 1204472343:Bonsack, Maria  |d 140000  |e 140000PB1204472343  |k 0/140000/  |p 1  |x j 
998 |g 1167191420  |a Riemer, Angelika  |m 1167191420:Riemer, Angelika  |d 50000  |e 50000PR1167191420  |k 0/50000/  |p 9  |y j 
998 |g 1142196372  |a Blatnik, Renata  |m 1142196372:Blatnik, Renata  |d 500000  |d 501036  |e 500000PB1142196372  |e 501036PB1142196372  |k 0/500000/  |k 1/500000/501036/  |p 8 
999 |a KXP-PPN1692356925  |e 3607055521 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["1692356925"],"doi":["10.1158/2326-6066.CIR-18-0584"]},"name":{"displayForm":["Maria Bonsack, Stephanie Hoppe, Jan Winter, Diana Tichy, Christine Zeller, Marius D. Küpper, Eva C. Schitter, Renata Blatnik, and Angelika B. Riemer"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"note":["Gesehen am 25.06.2020"],"title":[{"title_sort":"Performance evaluation of MHC class-I binding prediction tools based on an experimentally validated MHC-peptide binding data set","title":"Performance evaluation of MHC class-I binding prediction tools based on an experimentally validated MHC-peptide binding data set"}],"origin":[{"dateIssuedDisp":"March 22, 2019","dateIssuedKey":"2019"}],"relHost":[{"corporate":[{"display":"American Association for Cancer Research","role":"isb"}],"name":{"displayForm":["American Association for Cancer Research"]},"pubHistory":["1.2013 -"],"id":{"zdb":["2732517-9"],"eki":["767120027"],"issn":["2326-6074"]},"part":{"volume":"7","year":"2019","issue":"5","text":"7(2019), 5, Seite 719-736","extent":"28","pages":"719-736"},"physDesc":[{"extent":"Online-Ressource"}],"recId":"767120027","disp":"Performance evaluation of MHC class-I binding prediction tools based on an experimentally validated MHC-peptide binding data setCancer immunology research","origin":[{"publisher":"AACR","dateIssuedKey":"2013","dateIssuedDisp":"2013-","publisherPlace":"Philadelphia, Pa."}],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 08.06.2023","Fortsetzung der Druck-Ausgabe"],"title":[{"title":"Cancer immunology research","title_sort":"Cancer immunology research","subtitle":"illuminating the interplay of cancer and the immune system"}]}],"person":[{"role":"aut","given":"Maria","family":"Bonsack","display":"Bonsack, Maria"},{"display":"Winter, Jan","family":"Winter","role":"aut","given":"Jan"},{"display":"Tichy, Diana","family":"Tichy","given":"Diana","role":"aut"},{"role":"aut","given":"Renata","family":"Blatnik","display":"Blatnik, Renata"},{"display":"Riemer, Angelika","family":"Riemer","role":"aut","given":"Angelika"}],"physDesc":[{"extent":"28 S."}],"recId":"1692356925"} 
SRT |a BONSACKMARPERFORMANC2220