Machine learning for precision psychiatry: opportunities and challenges

The nature of mental illness remains a conundrum. Traditional disease categories are increasingly suspected to misrepresent the causes underlying mental disturbance. Yet psychiatrists and investigators now have an unprecedented opportunity to benefit from complex patterns in brain, behavior, and gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bzdok, Danilo (VerfasserIn) , Meyer-Lindenberg, Andreas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2018
In: Biological psychiatry. Cognitive neuroscience and neuroimaging
Year: 2017, Jahrgang: 3, Heft: 3, Pages: 223-230
ISSN:2451-9030
DOI:10.1016/j.bpsc.2017.11.007
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.bpsc.2017.11.007
Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S2451902217302069
Volltext
Verfasserangaben:Danilo Bzdok and Andreas Meyer-Lindenberg

MARC

LEADER 00000caa a2200000 c 4500
001 1693332574
003 DE-627
005 20230427033637.0
007 cr uuu---uuuuu
008 200326r20182017xx |||||o 00| ||eng c
024 7 |a 10.1016/j.bpsc.2017.11.007  |2 doi 
035 |a (DE-627)1693332574 
035 |a (DE-599)KXP1693332574 
035 |a (OCoLC)1341311168 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Bzdok, Danilo  |d 1984-  |e VerfasserIn  |0 (DE-588)1035656418  |0 (DE-627)749345306  |0 (DE-576)383427169  |4 aut 
245 1 0 |a Machine learning for precision psychiatry  |b opportunities and challenges  |c Danilo Bzdok and Andreas Meyer-Lindenberg 
264 1 |c 2018 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Available online 6 December 2017 
500 |a Gesehen am 26.03.2020 
520 |a The nature of mental illness remains a conundrum. Traditional disease categories are increasingly suspected to misrepresent the causes underlying mental disturbance. Yet psychiatrists and investigators now have an unprecedented opportunity to benefit from complex patterns in brain, behavior, and genes using methods from machine learning (e.g., support vector machines, modern neural-network algorithms, cross-validation procedures). Combining these analysis techniques with a wealth of data from consortia and repositories has the potential to advance a biologically grounded redefinition of major psychiatric disorders. Increasing evidence suggests that data-derived subgroups of psychiatric patients can better predict treatment outcomes than DSM/ICD diagnoses can. In a new era of evidence-based psychiatry tailored to single patients, objectively measurable endophenotypes could allow for early disease detection, individualized treatment selection, and dosage adjustment to reduce the burden of disease. This primer aims to introduce clinicians and researchers to the opportunities and challenges in bringing machine intelligence into psychiatric practice. 
534 |c 2017 
650 4 |a Artificial intelligence 
650 4 |a Endophenotypes 
650 4 |a Machine learning 
650 4 |a Null-hypothesis testing 
650 4 |a Personalized medicine 
650 4 |a Predictive analytics 
650 4 |a Research Domain Criteria (RDoC) 
650 4 |a Single-subject prediction 
700 1 |a Meyer-Lindenberg, Andreas  |d 1965-  |e VerfasserIn  |0 (DE-588)1029137390  |0 (DE-627)732483069  |0 (DE-576)376589876  |4 aut 
773 0 8 |i Enthalten in  |t Biological psychiatry. Cognitive neuroscience and neuroimaging  |d Amsterdam [u.a.] : Elsevier Inc., 2016  |g 3(2018), 3, Seite 223-230  |h Online-Ressource  |w (DE-627)87584197X  |w (DE-600)2879089-3  |w (DE-576)48138975X  |x 2451-9030  |7 nnas  |a Machine learning for precision psychiatry opportunities and challenges 
773 1 8 |g volume:3  |g year:2018  |g number:3  |g pages:223-230  |g extent:8  |a Machine learning for precision psychiatry opportunities and challenges 
856 4 0 |u https://doi.org/10.1016/j.bpsc.2017.11.007  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S2451902217302069  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200326 
993 |a Article 
994 |a 2018 
998 |g 1029137390  |a Meyer-Lindenberg, Andreas  |m 1029137390:Meyer-Lindenberg, Andreas  |d 60000  |e 60000PM1029137390  |k 0/60000/  |p 2  |y j 
999 |a KXP-PPN1693332574  |e 3613850567 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["1693332574"],"doi":["10.1016/j.bpsc.2017.11.007"]},"name":{"displayForm":["Danilo Bzdok and Andreas Meyer-Lindenberg"]},"title":[{"title_sort":"Machine learning for precision psychiatry","title":"Machine learning for precision psychiatry","subtitle":"opportunities and challenges"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"note":["Available online 6 December 2017","Gesehen am 26.03.2020"],"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"2018"}],"relHost":[{"disp":"Machine learning for precision psychiatry opportunities and challengesBiological psychiatry. Cognitive neuroscience and neuroimaging","physDesc":[{"extent":"Online-Ressource"}],"recId":"87584197X","note":["Gesehen am 29.01.2018"],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"partname":"Cognitive neuroscience and neuroimaging : cnni","title_sort":"Biological psychiatry","title":"Biological psychiatry"}],"origin":[{"publisher":"Elsevier Inc.","publisherPlace":"Amsterdam [u.a.]","dateIssuedDisp":"[2016]-"}],"part":{"pages":"223-230","extent":"8","text":"3(2018), 3, Seite 223-230","issue":"3","year":"2018","volume":"3"},"id":{"zdb":["2879089-3"],"eki":["87584197X"],"issn":["2451-9030"]},"titleAlt":[{"title":"Biological Psychiatry: Cognitive Neuroscience and Neuroimaging"},{"title":"Biological Psychiatry: CNNI"}],"pubHistory":["Volume 1, issue 1 (January 2016)-"],"name":{"displayForm":["Society of Biological Psychiatry"]}}],"person":[{"display":"Bzdok, Danilo","given":"Danilo","role":"aut","family":"Bzdok"},{"display":"Meyer-Lindenberg, Andreas","given":"Andreas","role":"aut","family":"Meyer-Lindenberg"}],"recId":"1693332574","physDesc":[{"extent":"8 S."}]} 
SRT |a BZDOKDANILMACHINELEA2018