Stability analysis of ground states in a one-dimensional trapped spin-1 Bose gas

In this work we study the stability properties of the ground states of a spin-1 Bose gas in presence of a trapping potential in one spatial dimension. To set the stage we first map out the phase diagram for the trapped system by making use of a, so-called, continuous-time Nesterov method. We present...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schmied, Christian-Marcel (VerfasserIn) , Gasenzer, Thomas (VerfasserIn) , Oberthaler, M. K. (VerfasserIn) , Kevrekidis, Panayotis G. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: [April 2020]
In: Communications in nonlinear science and numerical simulation
Year: 2019, Jahrgang: 83
ISSN:1007-5704
DOI:10.1016/j.cnsns.2019.105050
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.cnsns.2019.105050
Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S1007570419303697
Volltext
Verfasserangaben:C.-M. Schmied, T. Gasenzer, M.K. Oberthaler, P.G. Kevrekidis

MARC

LEADER 00000caa a2200000 c 4500
001 1693346303
003 DE-627
005 20220818021218.0
007 cr uuu---uuuuu
008 200326r20202019xx |||||o 00| ||eng c
024 7 |a 10.1016/j.cnsns.2019.105050  |2 doi 
035 |a (DE-627)1693346303 
035 |a (DE-599)KXP1693346303 
035 |a (OCoLC)1341311361 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Schmied, Christian-Marcel  |d 1990-  |e VerfasserIn  |0 (DE-588)1138361615  |0 (DE-627)895871181  |0 (DE-576)492499896  |4 aut 
245 1 0 |a Stability analysis of ground states in a one-dimensional trapped spin-1 Bose gas  |c C.-M. Schmied, T. Gasenzer, M.K. Oberthaler, P.G. Kevrekidis 
264 1 |c [April 2020] 
300 |a 20 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Available online 12 October 2019 
500 |a Gesehen am 26.03.2020 
520 |a In this work we study the stability properties of the ground states of a spin-1 Bose gas in presence of a trapping potential in one spatial dimension. To set the stage we first map out the phase diagram for the trapped system by making use of a, so-called, continuous-time Nesterov method. We present an extension of the method, which has been previously applied to one-component systems, to our multi-component system. We show that it is a powerful and robust tool for finding the ground states of a physical system without the need of an accurate initial guess. We subsequently solve numerically the Bogoliubov de-Gennes equations in order to analyze the stability of the ground states of the trapped spin-1 system. We find that the trapping potential retains the overall structure of the stability diagram, while affecting the spectral details of each of the possible ground state waveforms. It is also found that the peak density of the trapped system is the characteristic quantity describing dynamical instabilities in the system. Therefore replacing the homogeneous density with the peak density of the trapped system leads to good agreement of the homogeneous Bogoliubov predictions with the numerically observed maximal growth rates of dynamically unstable modes. The stability conclusions in the one-dimensional trapped system are independent of the spin coupling strength and the normalized trap strength over several orders of magnitude of their variation. 
534 |c 2019 
650 4 |a Bogoliubov de-Gennes equations 
650 4 |a Iterative methods 
650 4 |a Spinor bose gas 
650 4 |a Stability analysis 
700 1 |a Gasenzer, Thomas  |e VerfasserIn  |0 (DE-588)1019806370  |0 (DE-627)691023727  |0 (DE-576)358820294  |4 aut 
700 1 |a Oberthaler, M. K.  |e VerfasserIn  |4 aut 
700 1 |a Kevrekidis, Panayotis G.  |e VerfasserIn  |0 (DE-588)1079877339  |0 (DE-627)842387315  |0 (DE-576)45305613X  |4 aut 
773 0 8 |i Enthalten in  |t Communications in nonlinear science and numerical simulation  |d Amsterdam [u.a.] : Elsevier, 1996  |g 83 (2020) Artikel-Nummer 105050, Seite 1-20  |h Online-Ressource  |w (DE-627)352827580  |w (DE-600)2085706-8  |w (DE-576)259272507  |x 1007-5704  |7 nnas  |a Stability analysis of ground states in a one-dimensional trapped spin-1 Bose gas 
773 1 8 |g volume:83  |g year:2020  |g extent:20  |a Stability analysis of ground states in a one-dimensional trapped spin-1 Bose gas 
856 4 0 |u https://doi.org/10.1016/j.cnsns.2019.105050  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S1007570419303697  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200326 
993 |a Article 
994 |a 2020 
998 |g 1019806370  |a Gasenzer, Thomas  |m 1019806370:Gasenzer, Thomas  |d 130000  |d 130700  |e 130000PG1019806370  |e 130700PG1019806370  |k 0/130000/  |k 1/130000/130700/  |p 2 
998 |g 1138361615  |a Schmied, Christian-Marcel  |m 1138361615:Schmied, Christian-Marcel  |d 130000  |d 130700  |e 130000PS1138361615  |e 130700PS1138361615  |k 0/130000/  |k 1/130000/130700/  |p 1  |x j 
999 |a KXP-PPN1693346303  |e 3613877139 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["C.-M. Schmied, T. Gasenzer, M.K. Oberthaler, P.G. Kevrekidis"]},"id":{"eki":["1693346303"],"doi":["10.1016/j.cnsns.2019.105050"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"[April 2020]"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2085706-8"],"eki":["352827580"],"issn":["1007-5704"]},"origin":[{"publisherPlace":"Amsterdam [u.a.]","publisher":"Elsevier","dateIssuedKey":"1996","dateIssuedDisp":"1996-"}],"part":{"volume":"83","text":"83 (2020) Artikel-Nummer 105050, Seite 1-20","extent":"20","year":"2020"},"pubHistory":["1.1996 -"],"language":["eng"],"recId":"352827580","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 24.11.2020"],"disp":"Stability analysis of ground states in a one-dimensional trapped spin-1 Bose gasCommunications in nonlinear science and numerical simulation","title":[{"title":"Communications in nonlinear science and numerical simulation","title_sort":"Communications in nonlinear science and numerical simulation"}]}],"physDesc":[{"extent":"20 S."}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Schmied, Christian-Marcel","given":"Christian-Marcel","family":"Schmied"},{"given":"Thomas","family":"Gasenzer","role":"aut","display":"Gasenzer, Thomas","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Oberthaler, M. K.","roleDisplay":"VerfasserIn","given":"M. K.","family":"Oberthaler"},{"given":"Panayotis G.","family":"Kevrekidis","role":"aut","display":"Kevrekidis, Panayotis G.","roleDisplay":"VerfasserIn"}],"title":[{"title":"Stability analysis of ground states in a one-dimensional trapped spin-1 Bose gas","title_sort":"Stability analysis of ground states in a one-dimensional trapped spin-1 Bose gas"}],"recId":"1693346303","language":["eng"],"note":["Available online 12 October 2019","Gesehen am 26.03.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a SCHMIEDCHRSTABILITYA2020