Evaluation of prediction models for identifying malignancy in pulmonary nodules detected via low-dose computed tomography

Importance Malignancy prediction models based on participant-related characteristics and imaging parameters from low-dose computed tomography (CT) may improve decision-making regarding nodule management and diagnosis in lung cancer screening. Objective To externally validate 5 malignancy predictio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: González Maldonado, Sandra (VerfasserIn) , Delorme, Stefan (VerfasserIn) , Kauczor, Hans-Ulrich (VerfasserIn) , Heußel, Claus Peter (VerfasserIn) , Kaaks, Rudolf (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: February 14, 2020
In: JAMA network open
Year: 2020, Jahrgang: 3, Heft: 2, Pages: 1-15
ISSN:2574-3805
DOI:10.1001/jamanetworkopen.2019.21221
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1001/jamanetworkopen.2019.21221
Verlag, lizenzpflichtig, Volltext: https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2760895
Volltext
Verfasserangaben:Sandra González Maldonado, Stefan Delorme, Anika Hüsing, Erna Motsch, Hans-Ulrich Kauczor, Claus-Peter Heussel, Rudolf Kaaks

MARC

LEADER 00000caa a2200000 c 4500
001 1693373068
003 DE-627
005 20230221083702.0
007 cr uuu---uuuuu
008 200326s2020 xx |||||o 00| ||eng c
024 7 |a 10.1001/jamanetworkopen.2019.21221  |2 doi 
035 |a (DE-627)1693373068 
035 |a (DE-599)KXP1693373068 
035 |a (OCoLC)1341311314 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a González Maldonado, Sandra  |d 1988-  |e VerfasserIn  |0 (DE-588)1207113956  |0 (DE-627)1693372436  |4 aut 
245 1 0 |a Evaluation of prediction models for identifying malignancy in pulmonary nodules detected via low-dose computed tomography  |c Sandra González Maldonado, Stefan Delorme, Anika Hüsing, Erna Motsch, Hans-Ulrich Kauczor, Claus-Peter Heussel, Rudolf Kaaks 
264 1 |c February 14, 2020 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 26.03.2020 
520 |a Importance Malignancy prediction models based on participant-related characteristics and imaging parameters from low-dose computed tomography (CT) may improve decision-making regarding nodule management and diagnosis in lung cancer screening. Objective To externally validate 5 malignancy prediction models that were developed in screening settings, compared with 3 models that were developed in clinical settings, in terms of discrimination and absolute risk calibration among participants in the German Lung Cancer Screening Intervention trial.Design, Setting, and Participants In this population-based diagnostic study, malignancy probabilities were estimated by applying 8 prediction models to data from 1159 participants in the intervention arm of the Lung Cancer Screening Intervention trial, a randomized clinical trial conducted from October 23, 2007, to April 30, 2016, with ongoing follow-up. This analysis considers end points up to 1 year after individuals’ last screening visit. Inclusion criteria for participants were at least 1 noncalcified pulmonary nodule detected on any of 5 annual screening visits, receiving a lung cancer diagnosis within the active screening phase of the Lung Cancer Screening Intervention trial, and an unequivocal identification of the malignant nodules. Data analysis was performed from February 1, 2019, through December 5, 2019. Interventions Five annual rounds of low-dose multislice CT. 
700 1 |a Delorme, Stefan  |e VerfasserIn  |0 (DE-588)105842808X  |0 (DE-627)796879761  |0 (DE-576)179470140  |4 aut 
700 1 |a Kauczor, Hans-Ulrich  |d 1962-  |e VerfasserIn  |0 (DE-588)139267123  |0 (DE-627)70327113X  |0 (DE-576)310955327  |4 aut 
700 1 |a Heußel, Claus Peter  |e VerfasserIn  |0 (DE-588)1048631389  |0 (DE-627)780769422  |0 (DE-576)40288146X  |4 aut 
700 1 |a Kaaks, Rudolf  |d 1960-  |e VerfasserIn  |0 (DE-588)172809223  |0 (DE-627)697739562  |0 (DE-576)133665518  |4 aut 
773 0 8 |i Enthalten in  |t JAMA network open  |d Chicago, Ill. : American Medical Association, 2018  |g 3(2020), 2, Artikel-ID e1921221, Seite 1-15  |h Online-Ressource  |w (DE-627)1023451867  |w (DE-600)2931249-8  |w (DE-576)505831112  |x 2574-3805  |7 nnas  |a Evaluation of prediction models for identifying malignancy in pulmonary nodules detected via low-dose computed tomography 
773 1 8 |g volume:3  |g year:2020  |g number:2  |g elocationid:e1921221  |g pages:1-15  |g extent:15  |a Evaluation of prediction models for identifying malignancy in pulmonary nodules detected via low-dose computed tomography 
856 4 0 |u https://doi.org/10.1001/jamanetworkopen.2019.21221  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2760895  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200326 
993 |a Article 
994 |a 2020 
998 |g 172809223  |a Kaaks, Rudolf  |m 172809223:Kaaks, Rudolf  |d 50000  |e 50000PK172809223  |k 0/50000/  |p 7  |y j 
998 |g 1048631389  |a Heußel, Claus Peter  |m 1048631389:Heußel, Claus Peter  |d 910000  |d 950000  |d 950900  |d 50000  |e 910000PH1048631389  |e 950000PH1048631389  |e 950900PH1048631389  |e 50000PH1048631389  |k 0/910000/  |k 1/910000/950000/  |k 2/910000/950000/950900/  |k 0/50000/  |p 6 
998 |g 139267123  |a Kauczor, Hans-Ulrich  |m 139267123:Kauczor, Hans-Ulrich  |d 910000  |d 911400  |e 910000PK139267123  |e 911400PK139267123  |k 0/910000/  |k 1/910000/911400/  |p 5 
998 |g 105842808X  |a Delorme, Stefan  |m 105842808X:Delorme, Stefan  |d 50000  |e 50000PD105842808X  |k 0/50000/  |p 2 
998 |g 1207113956  |a González Maldonado, Sandra  |m 1207113956:González Maldonado, Sandra  |d 50000  |e 50000PG1207113956  |k 0/50000/  |p 1  |x j 
999 |a KXP-PPN1693373068  |e 3613939363 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"title":[{"title_sort":"Evaluation of prediction models for identifying malignancy in pulmonary nodules detected via low-dose computed tomography","title":"Evaluation of prediction models for identifying malignancy in pulmonary nodules detected via low-dose computed tomography"}],"recId":"1693373068","origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"February 14, 2020"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 26.03.2020"],"relHost":[{"title":[{"title":"JAMA network open","title_sort":"JAMA network open"}],"part":{"issue":"2","extent":"15","pages":"1-15","text":"3(2020), 2, Artikel-ID e1921221, Seite 1-15","year":"2020","volume":"3"},"language":["eng"],"pubHistory":["Vol 1, no. 1 (May 2018)-"],"name":{"displayForm":["American Medical Association"]},"disp":"Evaluation of prediction models for identifying malignancy in pulmonary nodules detected via low-dose computed tomographyJAMA network open","id":{"eki":["1023451867"],"issn":["2574-3805"],"zdb":["2931249-8"]},"physDesc":[{"extent":"Online-Ressource"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"1023451867","origin":[{"dateIssuedDisp":"[2018]-","publisher":"American Medical Association","publisherPlace":"Chicago, Ill."}]}],"physDesc":[{"extent":"15 S."}],"id":{"eki":["1693373068"],"doi":["10.1001/jamanetworkopen.2019.21221"]},"name":{"displayForm":["Sandra González Maldonado, Stefan Delorme, Anika Hüsing, Erna Motsch, Hans-Ulrich Kauczor, Claus-Peter Heussel, Rudolf Kaaks"]},"person":[{"display":"González Maldonado, Sandra","role":"aut","given":"Sandra","family":"González Maldonado"},{"display":"Delorme, Stefan","role":"aut","given":"Stefan","family":"Delorme"},{"given":"Hans-Ulrich","role":"aut","display":"Kauczor, Hans-Ulrich","family":"Kauczor"},{"family":"Heußel","role":"aut","given":"Claus Peter","display":"Heußel, Claus Peter"},{"family":"Kaaks","given":"Rudolf","role":"aut","display":"Kaaks, Rudolf"}]} 
SRT |a GONZALEZMAEVALUATION1420