A recurrent neural network for particle tracking in microscopy images using future information, track hypotheses, and multiple detections

Automatic tracking of particles in time-lapse fluorescence microscopy images is essential for quantifying the dynamic behavior of subcellular structures and virus structures. We introduce a novel particle tracking approach based on a deep recurrent neural network architecture that exploits past and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Spilger, Roman (VerfasserIn) , Imle, Andrea (VerfasserIn) , Lee, Ji Young (VerfasserIn) , Müller, Barbara (VerfasserIn) , Fackler, Oliver Till (VerfasserIn) , Bartenschlager, Ralf (VerfasserIn) , Rohr, Karl (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 13 January 2020
In: IEEE transactions on image processing
Year: 2020, Jahrgang: 29, Pages: 3681-3694
ISSN:1941-0042
DOI:10.1109/TIP.2020.2964515
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1109/TIP.2020.2964515
Volltext
Verfasserangaben:Roman Spilger, Andrea Imle, Ji-Young Lee, Barbara Müller, Oliver T. Fackler, Ralf Bartenschlager, Karl Rohr

MARC

LEADER 00000caa a22000002c 4500
001 1693480042
003 DE-627
005 20230427033652.0
007 cr uuu---uuuuu
008 200330s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2964515  |2 doi 
035 |a (DE-627)1693480042 
035 |a (DE-599)KXP1693480042 
035 |a (OCoLC)1341311525 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Spilger, Roman  |d 1987-  |e VerfasserIn  |0 (DE-588)1207287997  |0 (DE-627)1693482231  |4 aut 
245 1 2 |a A recurrent neural network for particle tracking in microscopy images using future information, track hypotheses, and multiple detections  |c Roman Spilger, Andrea Imle, Ji-Young Lee, Barbara Müller, Oliver T. Fackler, Ralf Bartenschlager, Karl Rohr 
264 1 |c 13 January 2020 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 30.03.2020 
520 |a Automatic tracking of particles in time-lapse fluorescence microscopy images is essential for quantifying the dynamic behavior of subcellular structures and virus structures. We introduce a novel particle tracking approach based on a deep recurrent neural network architecture that exploits past and future information in both forward and backward direction. Assignment probabilities are determined jointly across multiple detections, and the probability of missing detections is computed. In addition, existence probabilities are determined by the network to handle track initiation and termination. For correspondence finding, track hypotheses are propagated to future time points so that information at later time points can be used to resolve ambiguities. A handcrafted similarity measure and handcrafted motion features are not necessary. Manually labeled data is not required for network training. We evaluated the performance of our approach using image data of the Particle Tracking Challenge as well as real fluorescence microscopy image sequences of virus structures. It turned out that the proposed approach outperforms previous methods. 
650 4 |a assignment probabilities 
650 4 |a Biomedical imaging 
650 4 |a biomedical optical imaging 
650 4 |a deep learning 
650 4 |a Deep learning 
650 4 |a deep recurrent neural network architecture 
650 4 |a dynamic behavior 
650 4 |a fluorescence 
650 4 |a fluorescence microscopy image sequences 
650 4 |a image data 
650 4 |a image sequences 
650 4 |a Infectious diseases 
650 4 |a learning (artificial intelligence) 
650 4 |a medical image processing 
650 4 |a Microscopy 
650 4 |a microscopy images 
650 4 |a network training 
650 4 |a object tracking 
650 4 |a optical microscopy 
650 4 |a particle tracking 
650 4 |a Particle tracking 
650 4 |a probability 
650 4 |a recurrent neural nets 
650 4 |a Recurrent neural networks 
650 4 |a subcellular structures 
650 4 |a target tracking 
650 4 |a time-lapse fluorescence microscopy images 
650 4 |a track hypotheses 
650 4 |a track initiation 
650 4 |a Tracking 
650 4 |a virus structures 
650 4 |a Viruses (medical) 
700 1 |a Imle, Andrea  |e VerfasserIn  |0 (DE-588)1081196815  |0 (DE-627)845673068  |0 (DE-576)454020066  |4 aut 
700 1 |a Lee, Ji Young  |e VerfasserIn  |0 (DE-588)1058274570  |0 (DE-627)79668037X  |0 (DE-576)414323610  |4 aut 
700 1 |a Müller, Barbara  |d 1961-  |e VerfasserIn  |0 (DE-588)1028058667  |0 (DE-627)730238385  |0 (DE-576)375540024  |4 aut 
700 1 |a Fackler, Oliver Till  |e VerfasserIn  |0 (DE-588)1026682444  |0 (DE-627)727057391  |0 (DE-576)178094501  |4 aut 
700 1 |a Bartenschlager, Ralf  |d 1958-  |e VerfasserIn  |0 (DE-588)1058097989  |0 (DE-627)796390509  |0 (DE-576)168706067  |4 aut 
700 1 |a Rohr, Karl  |e VerfasserIn  |0 (DE-588)137474466  |0 (DE-627)695829440  |0 (DE-576)303788593  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE transactions on image processing  |d New York, NY : IEEE, 1992  |g 29(2020), Seite 3681-3694  |h Online-Ressource  |w (DE-627)325162050  |w (DE-600)2034319-X  |w (DE-576)094086281  |x 1941-0042  |7 nnas 
773 1 8 |g volume:29  |g year:2020  |g pages:3681-3694  |g extent:14  |a A recurrent neural network for particle tracking in microscopy images using future information, track hypotheses, and multiple detections 
856 4 0 |u https://doi.org/10.1109/TIP.2020.2964515  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200330 
993 |a Article 
994 |a 2020 
998 |g 137474466  |a Rohr, Karl  |m 137474466:Rohr, Karl  |d 160000  |d 160100  |e 160000PR137474466  |e 160100PR137474466  |k 0/160000/  |k 1/160000/160100/  |p 7  |y j 
998 |g 1058097989  |a Bartenschlager, Ralf  |m 1058097989:Bartenschlager, Ralf  |d 910000  |d 911700  |e 910000PB1058097989  |e 911700PB1058097989  |k 0/910000/  |k 1/910000/911700/  |p 6 
998 |g 1026682444  |a Fackler, Oliver Till  |m 1026682444:Fackler, Oliver Till  |d 910000  |d 911700  |e 910000PF1026682444  |e 911700PF1026682444  |k 0/910000/  |k 1/910000/911700/  |p 5 
998 |g 1028058667  |a Müller, Barbara  |m 1028058667:Müller, Barbara  |d 910000  |d 911700  |e 910000PM1028058667  |e 911700PM1028058667  |k 0/910000/  |k 1/910000/911700/  |p 4 
998 |g 1058274570  |a Lee, Ji Young  |m 1058274570:Lee, Ji Young  |d 910000  |d 911700  |e 910000PL1058274570  |e 911700PL1058274570  |k 0/910000/  |k 1/910000/911700/  |p 3 
998 |g 1081196815  |a Imle, Andrea  |m 1081196815:Imle, Andrea  |d 910000  |d 911700  |e 910000PI1081196815  |e 911700PI1081196815  |k 0/910000/  |k 1/910000/911700/  |p 2 
998 |g 1207287997  |a Spilger, Roman  |m 1207287997:Spilger, Roman  |d 700000  |d 716000  |e 700000PS1207287997  |e 716000PS1207287997  |k 0/700000/  |k 1/700000/716000/  |p 1  |x j 
999 |a KXP-PPN1693480042  |e 3615666917 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title":"A recurrent neural network for particle tracking in microscopy images using future information, track hypotheses, and multiple detections","title_sort":"recurrent neural network for particle tracking in microscopy images using future information, track hypotheses, and multiple detections"}],"note":["Gesehen am 30.03.2020"],"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"13 January 2020"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"relHost":[{"id":{"issn":["1941-0042"],"zdb":["2034319-X"],"eki":["325162050"]},"physDesc":[{"extent":"Online-Ressource"}],"recId":"325162050","disp":"Institute of Electrical and Electronics EngineersIEEE transactions on image processing","type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title_sort":"IEEE transactions on image processing","subtitle":"a publication of the IEEE Signal Processing Society","title":"IEEE transactions on image processing"}],"note":["Gesehen am 10.09.02"],"origin":[{"publisher":"IEEE","dateIssuedKey":"1992","dateIssuedDisp":"1992-","publisherPlace":"New York, NY"}],"pubHistory":["1.1992 -"],"titleAlt":[{"title":"Transactions on image processing"}],"part":{"volume":"29","extent":"14","text":"29(2020), Seite 3681-3694","pages":"3681-3694","year":"2020"},"language":["eng"],"corporate":[{"display":"Institute of Electrical and Electronics Engineers","role":"aut"},{"display":"IEEE Signal Processing Society","role":"isb"}]}],"recId":"1693480042","physDesc":[{"extent":"14 S."}],"name":{"displayForm":["Roman Spilger, Andrea Imle, Ji-Young Lee, Barbara Müller, Oliver T. Fackler, Ralf Bartenschlager, Karl Rohr"]},"id":{"eki":["1693480042"],"doi":["10.1109/TIP.2020.2964515"]},"person":[{"family":"Spilger","display":"Spilger, Roman","given":"Roman","role":"aut"},{"family":"Imle","display":"Imle, Andrea","given":"Andrea","role":"aut"},{"role":"aut","given":"Ji Young","display":"Lee, Ji Young","family":"Lee"},{"display":"Müller, Barbara","family":"Müller","role":"aut","given":"Barbara"},{"given":"Oliver Till","role":"aut","display":"Fackler, Oliver Till","family":"Fackler"},{"given":"Ralf","role":"aut","family":"Bartenschlager","display":"Bartenschlager, Ralf"},{"given":"Karl","role":"aut","family":"Rohr","display":"Rohr, Karl"}],"language":["eng"]} 
SRT |a SPILGERROMRECURRENTN1320