MACE-AL
A method for detecting noise in automatically annotated sequence-labelled data, combining MACE (Hovy et al. 2013) with Active Learning.
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Database Research Data |
| Language: | English |
| Published: |
Heidelberg
Universität
2020-03-26
|
| DOI: | 10.11588/data/C2OQN4 |
| Subjects: | |
| Online Access: | Verlag, kostenfrei, Volltext: https://doi.org/10.11588/data/C2OQN4 Verlag, kostenfrei, Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/C2OQN4 Verlag, kostenfrei, Volltext: https://github.com/julmaxi/MACE-AL |
| Author Notes: | Ines Rehbein, Josef Ruppenhofer, Julius Steen |
| Summary: | A method for detecting noise in automatically annotated sequence-labelled data, combining MACE (Hovy et al. 2013) with Active Learning. |
|---|---|
| Item Description: | Production date: 2017 Kind of data: Python code Gesehen am 31.03.2020 |
| Physical Description: | Online Resource |
| DOI: | 10.11588/data/C2OQN4 |