Tuning spin current injection at ferromagnet-nonmagnet interfaces by molecular design

There is a growing interest in utilizing the distinctive material properties of organic semiconductors for spintronic applications. Here, we explore the injection of pure spin current from Permalloy into a small molecule system based on dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophene (DNTT) at ferromag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wittmann, Angela (VerfasserIn) , Lami, Vincent (VerfasserIn) , Vaynzof, Yana (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 16 January 2020
In: Physical review letters
Year: 2020, Jahrgang: 124, Heft: 2
ISSN:1079-7114
DOI:10.1103/PhysRevLett.124.027204
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevLett.124.027204
Verlag, lizenzpflichtig, Volltext: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.027204
Volltext
Verfasserangaben:Angela Wittmann, Guillaume Schweicher, Katharina Broch, Jiri Novak, Vincent Lami, David Cornil, Erik R. McNellis, Olga Zadvorna, Deepak Venkateshvaran, Kazuo Takimiya, Yves H. Geerts, Jérôme Cornil, Yana Vaynzof, Jairo Sinova, Shun Watanabe, and Henning Sirringhaus
Beschreibung
Zusammenfassung:There is a growing interest in utilizing the distinctive material properties of organic semiconductors for spintronic applications. Here, we explore the injection of pure spin current from Permalloy into a small molecule system based on dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophene (DNTT) at ferromagnetic resonance. The unique tunability of organic materials by molecular design allows us to study the impact of interfacial properties on the spin injection efficiency systematically. We show that both the spin injection efficiency at the interface and the spin diffusion length can be tuned sensitively by the interfacial molecular structure and side chain substitution of the molecule.
Beschreibung:Gesehen am 02.04.2020
Beschreibung:Online Resource
ISSN:1079-7114
DOI:10.1103/PhysRevLett.124.027204