Searching for shortest and least programs

The Kolmogorov complexity of a string x is defined as the length of a shortest program p of x for some appropriate universal machine U, that is, U(p)=x and p is a shortest string with this property. Neither the plain nor the prefix-free version of Kolmogorov complexity are recursive but for both ver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Calude, Cristian (VerfasserIn) , Jain, Sanjay (VerfasserIn) , Merkle, Wolfgang (VerfasserIn) , Stephan, Frank (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2020
In: Theoretical computer science
Year: 2019, Jahrgang: 807, Pages: 114-127
ISSN:1879-2294
DOI:10.1016/j.tcs.2019.10.011
Online-Zugang:Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.tcs.2019.10.011
Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S0304397519306401
Volltext
Verfasserangaben:Cristian S. Calude, Sanjay Jain, Wolfgang Merkle, Frank Stephan

MARC

LEADER 00000caa a2200000 c 4500
001 1694154076
003 DE-627
005 20220818032316.0
007 cr uuu---uuuuu
008 200407r20202019xx |||||o 00| ||eng c
024 7 |a 10.1016/j.tcs.2019.10.011  |2 doi 
035 |a (DE-627)1694154076 
035 |a (DE-599)KXP1694154076 
035 |a (OCoLC)1341313751 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Calude, Cristian  |d 1952-  |e VerfasserIn  |0 (DE-588)120988259  |0 (DE-627)081013167  |0 (DE-576)292483910  |4 aut 
245 1 0 |a Searching for shortest and least programs  |c Cristian S. Calude, Sanjay Jain, Wolfgang Merkle, Frank Stephan 
264 1 |c 2020 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Available online 15 October 2019 
500 |a Gesehen am 07.04.2020 
520 |a The Kolmogorov complexity of a string x is defined as the length of a shortest program p of x for some appropriate universal machine U, that is, U(p)=x and p is a shortest string with this property. Neither the plain nor the prefix-free version of Kolmogorov complexity are recursive but for both versions it is well-known that there are recursive exact Solovay functions, that is, recursive upper bounds for Kolmogorov complexity that are infinitely often tight. Let a coding function for a machine M be a function f such that f(x) is always a program of x for M. From the existence of exact Solovay functions it follows easily that for every universal machine there is a recursive coding function that maps infinitely many strings to a shortest program. Extending a recent line of research, in what follows it is investigated in which situations there is a coding function for some universal machine that maps infinitely many strings to the length-lexicographically least program. The main results which hold in the plain as well as in the prefix-free setting are the following. For every universal machine there is a recursive coding function that maps infinitely many strings to their least programs. There is a partial recursive coding function (defined in the natural way) for some universal machine that for every set maps infinitely many prefixes of the set to their least programs. Exactly for every set that is Bennett shallow (not deep), there is a recursive coding function for some universal machine that maps all prefixes of the set to their least programs. Differences between the plain and the prefix-free frameworks are obtained by considering effective sequences I1,I2,… of mutually disjoint finite sets and asking for a recursive coding function for some universal machine that maps at least one string in each set In to its least code. Such coding functions do not exist in the prefix-free setting but exist in the plain setting in case the sets In are not too small. 
534 |c 2019 
650 4 |a Algorithmic Information Theory 
650 4 |a Bennett shallow set 
650 4 |a Kolmogorov complexity 
650 4 |a Least program 
650 4 |a Recursion theory 
650 4 |a Recursive coding function 
650 4 |a Shortest program 
650 4 |a Universal Turing machine 
700 1 |a Jain, Sanjay  |e VerfasserIn  |4 aut 
700 1 |a Merkle, Wolfgang  |e VerfasserIn  |0 (DE-588)1049898400  |0 (DE-627)782852831  |0 (DE-576)40388201X  |4 aut 
700 1 |a Stephan, Frank  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Theoretical computer science  |d Amsterdam [u.a.] : Elsevier, 1975  |g 807(2020), Seite 114-127  |h Online-Ressource  |w (DE-627)265784174  |w (DE-600)1466347-8  |w (DE-576)074891030  |x 1879-2294  |7 nnas  |a Searching for shortest and least programs 
773 1 8 |g volume:807  |g year:2020  |g pages:114-127  |g extent:14  |a Searching for shortest and least programs 
856 4 0 |u https://doi.org/10.1016/j.tcs.2019.10.011  |x Resolving-System  |x Verlag  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0304397519306401  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200407 
993 |a Article 
994 |a 2020 
998 |g 1049898400  |a Merkle, Wolfgang  |m 1049898400:Merkle, Wolfgang  |d 110000  |d 110300  |e 110000PM1049898400  |e 110300PM1049898400  |k 0/110000/  |k 1/110000/110300/  |p 3 
999 |a KXP-PPN1694154076  |e 3619705984 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["1694154076"],"doi":["10.1016/j.tcs.2019.10.011"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"2020"}],"name":{"displayForm":["Cristian S. Calude, Sanjay Jain, Wolfgang Merkle, Frank Stephan"]},"relHost":[{"recId":"265784174","language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 12.04.23"],"disp":"Searching for shortest and least programsTheoretical computer science","part":{"year":"2020","pages":"114-127","volume":"807","text":"807(2020), Seite 114-127","extent":"14"},"pubHistory":["1.1975/76 - 412.2011; Vol. 413.2012 -"],"title":[{"title_sort":"Theoretical computer science","subtitle":"the journal of the EATCS","title":"Theoretical computer science"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["1466347-8"],"eki":["265784174"],"issn":["1879-2294"]},"origin":[{"publisher":"Elsevier","dateIssuedKey":"1975","dateIssuedDisp":"1975-","publisherPlace":"Amsterdam [u.a.]"}]}],"physDesc":[{"extent":"14 S."}],"title":[{"title_sort":"Searching for shortest and least programs","title":"Searching for shortest and least programs"}],"person":[{"family":"Calude","given":"Cristian","display":"Calude, Cristian","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Jain","given":"Sanjay","display":"Jain, Sanjay","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Merkle, Wolfgang","given":"Wolfgang","family":"Merkle"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Stephan, Frank","given":"Frank","family":"Stephan"}],"language":["eng"],"recId":"1694154076","note":["Available online 15 October 2019","Gesehen am 07.04.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a CALUDECRISSEARCHINGF2020