Hysteresis-driven pattern formation in reaction-diffusion-ODE systems
<p style='text-indent:20px;'>The paper is devoted to analysis of <i>far-from-equilibrium</i> pattern formation in a system of a reaction-diffusion equation and an ordinary differential equation (ODE). Such systems arise in modeling of interactions between cellular process...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
[June 2020]
|
| In: |
Discrete and continuous dynamical systems
Year: 2020, Volume: 40, Issue: 6, Pages: 3595-3627 |
| ISSN: | 1553-5231 |
| DOI: | 10.3934/dcds.2020170 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3934/dcds.2020170 Verlag, lizenzpflichtig, Volltext: https://www.aimsciences.org/article/doi/10.3934/dcds.2020170 |
| Author Notes: | Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1694423883 | ||
| 003 | DE-627 | ||
| 005 | 20220818035508.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200414s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.3934/dcds.2020170 |2 doi | |
| 035 | |a (DE-627)1694423883 | ||
| 035 | |a (DE-599)KXP1694423883 | ||
| 035 | |a (OCoLC)1341314714 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Köthe, Alexandra |e VerfasserIn |0 (DE-588)1044999713 |0 (DE-627)77338359X |0 (DE-576)398313148 |4 aut | |
| 245 | 1 | 0 | |a Hysteresis-driven pattern formation in reaction-diffusion-ODE systems |c Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi |
| 264 | 1 | |c [June 2020] | |
| 300 | |a 33 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 14.04.2020 | ||
| 520 | |a <p style='text-indent:20px;'>The paper is devoted to analysis of <i>far-from-equilibrium</i> pattern formation in a system of a reaction-diffusion equation and an ordinary differential equation (ODE). Such systems arise in modeling of interactions between cellular processes and diffusing growth factors. Pattern formation results from hysteresis in the dependence of the quasi-stationary solution of the ODE on the diffusive component. Bistability alone, without hysteresis, does not result in stable patterns. We provide a systematic description of the hysteresis-driven stationary solutions, which may be monotone, periodic or irregular. We prove existence of infinitely many stationary solutions with jump discontinuity and their asymptotic stability for a certain class of reaction-diffusion-ODE systems. Nonlinear stability is proved using direct estimates of the model nonlinearities and properties of the strongly continuous diffusion semigroup.</p> | ||
| 700 | 1 | |a Marciniak-Czochra, Anna |d 1974- |e VerfasserIn |0 (DE-588)1044379626 |0 (DE-627)771928432 |0 (DE-576)397031505 |4 aut | |
| 700 | 1 | |a Takagi, Izumi |e VerfasserIn |0 (DE-588)1137271175 |0 (DE-627)894262696 |0 (DE-576)409770094 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Discrete and continuous dynamical systems |d Springfield, Mo. : American Institute of Mathematical Sciences, 1995 |g 40(2020), 6, Seite 3595-3627 |h Online-Ressource |w (DE-627)341363782 |w (DE-600)2069136-1 |w (DE-576)110916646 |x 1553-5231 |7 nnas |a Hysteresis-driven pattern formation in reaction-diffusion-ODE systems |
| 773 | 1 | 8 | |g volume:40 |g year:2020 |g number:6 |g pages:3595-3627 |g extent:33 |a Hysteresis-driven pattern formation in reaction-diffusion-ODE systems |
| 856 | 4 | 0 | |u https://doi.org/10.3934/dcds.2020170 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.aimsciences.org/article/doi/10.3934/dcds.2020170 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200414 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1044379626 |a Marciniak-Czochra, Anna |m 1044379626:Marciniak-Czochra, Anna |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PM1044379626 |e 110200PM1044379626 |e 110000PM1044379626 |e 110400PM1044379626 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 2 | ||
| 999 | |a KXP-PPN1694423883 |e 3622601965 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"33 S."}],"relHost":[{"id":{"issn":["1553-5231"],"eki":["341363782"],"zdb":["2069136-1"]},"origin":[{"dateIssuedDisp":"1995-","publisher":"American Institute of Mathematical Sciences","dateIssuedKey":"1995","publisherPlace":"Springfield, Mo."}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Discrete and continuous dynamical systems","subtitle":"DCDS","title_sort":"Discrete and continuous dynamical systems"}],"recId":"341363782","language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Hysteresis-driven pattern formation in reaction-diffusion-ODE systemsDiscrete and continuous dynamical systems","note":["Gesehen am 27.06.2024"],"titleAlt":[{"title":"Discrete and continuous dynamical systems / A"}],"part":{"issue":"6","pages":"3595-3627","year":"2020","extent":"33","volume":"40","text":"40(2020), 6, Seite 3595-3627"},"pubHistory":["1.1995 -"]}],"name":{"displayForm":["Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"[June 2020]"}],"id":{"eki":["1694423883"],"doi":["10.3934/dcds.2020170"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 14.04.2020"],"language":["eng"],"recId":"1694423883","person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Köthe, Alexandra","given":"Alexandra","family":"Köthe"},{"given":"Anna","family":"Marciniak-Czochra","role":"aut","roleDisplay":"VerfasserIn","display":"Marciniak-Czochra, Anna"},{"display":"Takagi, Izumi","roleDisplay":"VerfasserIn","role":"aut","family":"Takagi","given":"Izumi"}],"title":[{"title":"Hysteresis-driven pattern formation in reaction-diffusion-ODE systems","title_sort":"Hysteresis-driven pattern formation in reaction-diffusion-ODE systems"}]} | ||
| SRT | |a KOETHEALEXHYSTERESIS2020 | ||