Hysteresis-driven pattern formation in reaction-diffusion-ODE systems

<p style='text-indent:20px;'>The paper is devoted to analysis of <i>far-from-equilibrium</i> pattern formation in a system of a reaction-diffusion equation and an ordinary differential equation (ODE). Such systems arise in modeling of interactions between cellular process...

Full description

Saved in:
Bibliographic Details
Main Authors: Köthe, Alexandra (Author) , Marciniak-Czochra, Anna (Author) , Takagi, Izumi (Author)
Format: Article (Journal)
Language:English
Published: [June 2020]
In: Discrete and continuous dynamical systems
Year: 2020, Volume: 40, Issue: 6, Pages: 3595-3627
ISSN:1553-5231
DOI:10.3934/dcds.2020170
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3934/dcds.2020170
Verlag, lizenzpflichtig, Volltext: https://www.aimsciences.org/article/doi/10.3934/dcds.2020170
Get full text
Author Notes:Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi

MARC

LEADER 00000caa a2200000 c 4500
001 1694423883
003 DE-627
005 20220818035508.0
007 cr uuu---uuuuu
008 200414s2020 xx |||||o 00| ||eng c
024 7 |a 10.3934/dcds.2020170  |2 doi 
035 |a (DE-627)1694423883 
035 |a (DE-599)KXP1694423883 
035 |a (OCoLC)1341314714 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Köthe, Alexandra  |e VerfasserIn  |0 (DE-588)1044999713  |0 (DE-627)77338359X  |0 (DE-576)398313148  |4 aut 
245 1 0 |a Hysteresis-driven pattern formation in reaction-diffusion-ODE systems  |c Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi 
264 1 |c [June 2020] 
300 |a 33 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 14.04.2020 
520 |a <p style='text-indent:20px;'>The paper is devoted to analysis of <i>far-from-equilibrium</i> pattern formation in a system of a reaction-diffusion equation and an ordinary differential equation (ODE). Such systems arise in modeling of interactions between cellular processes and diffusing growth factors. Pattern formation results from hysteresis in the dependence of the quasi-stationary solution of the ODE on the diffusive component. Bistability alone, without hysteresis, does not result in stable patterns. We provide a systematic description of the hysteresis-driven stationary solutions, which may be monotone, periodic or irregular. We prove existence of infinitely many stationary solutions with jump discontinuity and their asymptotic stability for a certain class of reaction-diffusion-ODE systems. Nonlinear stability is proved using direct estimates of the model nonlinearities and properties of the strongly continuous diffusion semigroup.</p> 
700 1 |a Marciniak-Czochra, Anna  |d 1974-  |e VerfasserIn  |0 (DE-588)1044379626  |0 (DE-627)771928432  |0 (DE-576)397031505  |4 aut 
700 1 |a Takagi, Izumi  |e VerfasserIn  |0 (DE-588)1137271175  |0 (DE-627)894262696  |0 (DE-576)409770094  |4 aut 
773 0 8 |i Enthalten in  |t Discrete and continuous dynamical systems  |d Springfield, Mo. : American Institute of Mathematical Sciences, 1995  |g 40(2020), 6, Seite 3595-3627  |h Online-Ressource  |w (DE-627)341363782  |w (DE-600)2069136-1  |w (DE-576)110916646  |x 1553-5231  |7 nnas  |a Hysteresis-driven pattern formation in reaction-diffusion-ODE systems 
773 1 8 |g volume:40  |g year:2020  |g number:6  |g pages:3595-3627  |g extent:33  |a Hysteresis-driven pattern formation in reaction-diffusion-ODE systems 
856 4 0 |u https://doi.org/10.3934/dcds.2020170  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.aimsciences.org/article/doi/10.3934/dcds.2020170  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200414 
993 |a Article 
994 |a 2020 
998 |g 1044379626  |a Marciniak-Czochra, Anna  |m 1044379626:Marciniak-Czochra, Anna  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PM1044379626  |e 110200PM1044379626  |e 110000PM1044379626  |e 110400PM1044379626  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 2 
999 |a KXP-PPN1694423883  |e 3622601965 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"33 S."}],"relHost":[{"id":{"issn":["1553-5231"],"eki":["341363782"],"zdb":["2069136-1"]},"origin":[{"dateIssuedDisp":"1995-","publisher":"American Institute of Mathematical Sciences","dateIssuedKey":"1995","publisherPlace":"Springfield, Mo."}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Discrete and continuous dynamical systems","subtitle":"DCDS","title_sort":"Discrete and continuous dynamical systems"}],"recId":"341363782","language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Hysteresis-driven pattern formation in reaction-diffusion-ODE systemsDiscrete and continuous dynamical systems","note":["Gesehen am 27.06.2024"],"titleAlt":[{"title":"Discrete and continuous dynamical systems / A"}],"part":{"issue":"6","pages":"3595-3627","year":"2020","extent":"33","volume":"40","text":"40(2020), 6, Seite 3595-3627"},"pubHistory":["1.1995 -"]}],"name":{"displayForm":["Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"[June 2020]"}],"id":{"eki":["1694423883"],"doi":["10.3934/dcds.2020170"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 14.04.2020"],"language":["eng"],"recId":"1694423883","person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Köthe, Alexandra","given":"Alexandra","family":"Köthe"},{"given":"Anna","family":"Marciniak-Czochra","role":"aut","roleDisplay":"VerfasserIn","display":"Marciniak-Czochra, Anna"},{"display":"Takagi, Izumi","roleDisplay":"VerfasserIn","role":"aut","family":"Takagi","given":"Izumi"}],"title":[{"title":"Hysteresis-driven pattern formation in reaction-diffusion-ODE systems","title_sort":"Hysteresis-driven pattern formation in reaction-diffusion-ODE systems"}]} 
SRT |a KOETHEALEXHYSTERESIS2020