Non-commutative L-functions for p-adic representations over totally real fields

We prove a unicity result for the Non-Commutative L-Functions for p-Adic Representations over Totally Real Fields-functions appearing in the non-commutative Iwasawa main conjecture over totally real fields. We then consider continuous representations rho of the absolute Galois group of a totally rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Witte, Malte (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2019
In: Documenta mathematica
Year: 2019, Jahrgang: 24, Pages: 1413-1511
ISSN:1431-0643
DOI:10.25537/dm.2019v24.1413-1511
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.25537/dm.2019v24.1413-1511
Verlag, lizenzpflichtig, Volltext: https://www.elibm.org/article/10011978
Volltext
Verfasserangaben:Malte Witte

MARC

LEADER 00000caa a2200000 c 4500
001 1694524191
003 DE-627
005 20220818040740.0
007 cr uuu---uuuuu
008 200415s2019 xx |||||o 00| ||eng c
024 7 |a 10.25537/dm.2019v24.1413-1511  |2 doi 
035 |a (DE-627)1694524191 
035 |a (DE-599)KXP1694524191 
035 |a (OCoLC)1341314950 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Witte, Malte  |d 1977-  |e VerfasserIn  |0 (DE-588)137118120  |0 (DE-627)589937375  |0 (DE-576)288515390  |4 aut 
245 1 0 |a Non-commutative L-functions for p-adic representations over totally real fields  |c Malte Witte 
264 1 |c 2019 
300 |a 99 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 15.04.2020 
520 |a We prove a unicity result for the Non-Commutative L-Functions for p-Adic Representations over Totally Real Fields-functions appearing in the non-commutative Iwasawa main conjecture over totally real fields. We then consider continuous representations rho of the absolute Galois group of a totally real field F on adic rings in the sense of Fukaya and Kato. Using our unicity result, we show that there exists a unique sensible definition of a non-commutative L-function for any such rho that factors through the Galois group of a possibly infinite totally real extension. We also consider the case of CM-extensions and discuss the relation with the equivariant main conjecture for realisations of abstract 1-motives of Greither and Popescu. 
650 4 |a iwasawa theory 
650 4 |a k-theory 
650 4 |a main conjecture 
650 4 |a Main Conjecture 
650 4 |a non-commutative Iwasawa theory 
650 4 |a totally real fields 
773 0 8 |i Enthalten in  |t Documenta mathematica  |d Berlin, Germany : EMS Press, an imprint of the European Mathematical Society - EMS - Publishing House GmbH, Institut für Mathematik, Technische Universität Berlin, 1996  |g 24(2019), Seite 1413-1511  |h Online-Ressource  |w (DE-627)266882536  |w (DE-600)1468097-X  |w (DE-576)281189838  |x 1431-0643  |7 nnas  |a Non-commutative L-functions for p-adic representations over totally real fields 
773 1 8 |g volume:24  |g year:2019  |g pages:1413-1511  |g extent:99  |a Non-commutative L-functions for p-adic representations over totally real fields 
856 4 0 |u https://doi.org/10.25537/dm.2019v24.1413-1511  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.elibm.org/article/10011978  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200415 
993 |a Article 
994 |a 2019 
998 |g 137118120  |a Witte, Malte  |m 137118120:Witte, Malte  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PW137118120  |e 110100PW137118120  |e 110000PW137118120  |e 110400PW137118120  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j  |y j 
999 |a KXP-PPN1694524191  |e 3623335681 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Berlin, Germany ; Berlin","dateIssuedDisp":"1996-","publisher":"EMS Press, an imprint of the European Mathematical Society - EMS - Publishing House GmbH, Institut für Mathematik, Technische Universität Berlin ; Deutsche Mathematiker-Vereinigung e.V.","dateIssuedKey":"1996"}],"id":{"eki":["266882536"],"zdb":["1468097-X"],"issn":["1431-0643"]},"pubHistory":["1.1996 -"],"titleAlt":[{"title":"Journal der Deutschen Mathematiker-Vereinigung"},{"title":"Journal der Deutschen Mathematiker-Vereinigung"}],"part":{"text":"24(2019), Seite 1413-1511","volume":"24","extent":"99","year":"2019","pages":"1413-1511"},"note":["Gesehen am 21.06.2019"],"disp":"Non-commutative L-functions for p-adic representations over totally real fieldsDocumenta mathematica","type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"266882536","language":["ger"],"corporate":[{"role":"isb","display":"Deutsche Mathematiker-Vereinigung","roleDisplay":"Herausgebendes Organ"}],"title":[{"title_sort":"Documenta mathematica","title":"Documenta mathematica"}]}],"physDesc":[{"extent":"99 S."}],"id":{"doi":["10.25537/dm.2019v24.1413-1511"],"eki":["1694524191"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"2019"}],"name":{"displayForm":["Malte Witte"]},"recId":"1694524191","language":["eng"],"note":["Gesehen am 15.04.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title_sort":"Non-commutative L-functions for p-adic representations over totally real fields","title":"Non-commutative L-functions for p-adic representations over totally real fields"}],"person":[{"family":"Witte","given":"Malte","roleDisplay":"VerfasserIn","display":"Witte, Malte","role":"aut"}]} 
SRT |a WITTEMALTENONCOMMUTA2019