Non-commutative L-functions for p-adic representations over totally real fields
We prove a unicity result for the Non-Commutative L-Functions for p-Adic Representations over Totally Real Fields-functions appearing in the non-commutative Iwasawa main conjecture over totally real fields. We then consider continuous representations rho of the absolute Galois group of a totally rea...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2019
|
| In: |
Documenta mathematica
Year: 2019, Jahrgang: 24, Pages: 1413-1511 |
| ISSN: | 1431-0643 |
| DOI: | 10.25537/dm.2019v24.1413-1511 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.25537/dm.2019v24.1413-1511 Verlag, lizenzpflichtig, Volltext: https://www.elibm.org/article/10011978 |
| Verfasserangaben: | Malte Witte |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1694524191 | ||
| 003 | DE-627 | ||
| 005 | 20220818040740.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200415s2019 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.25537/dm.2019v24.1413-1511 |2 doi | |
| 035 | |a (DE-627)1694524191 | ||
| 035 | |a (DE-599)KXP1694524191 | ||
| 035 | |a (OCoLC)1341314950 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Witte, Malte |d 1977- |e VerfasserIn |0 (DE-588)137118120 |0 (DE-627)589937375 |0 (DE-576)288515390 |4 aut | |
| 245 | 1 | 0 | |a Non-commutative L-functions for p-adic representations over totally real fields |c Malte Witte |
| 264 | 1 | |c 2019 | |
| 300 | |a 99 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 15.04.2020 | ||
| 520 | |a We prove a unicity result for the Non-Commutative L-Functions for p-Adic Representations over Totally Real Fields-functions appearing in the non-commutative Iwasawa main conjecture over totally real fields. We then consider continuous representations rho of the absolute Galois group of a totally real field F on adic rings in the sense of Fukaya and Kato. Using our unicity result, we show that there exists a unique sensible definition of a non-commutative L-function for any such rho that factors through the Galois group of a possibly infinite totally real extension. We also consider the case of CM-extensions and discuss the relation with the equivariant main conjecture for realisations of abstract 1-motives of Greither and Popescu. | ||
| 650 | 4 | |a iwasawa theory | |
| 650 | 4 | |a k-theory | |
| 650 | 4 | |a main conjecture | |
| 650 | 4 | |a Main Conjecture | |
| 650 | 4 | |a non-commutative Iwasawa theory | |
| 650 | 4 | |a totally real fields | |
| 773 | 0 | 8 | |i Enthalten in |t Documenta mathematica |d Berlin, Germany : EMS Press, an imprint of the European Mathematical Society - EMS - Publishing House GmbH, Institut für Mathematik, Technische Universität Berlin, 1996 |g 24(2019), Seite 1413-1511 |h Online-Ressource |w (DE-627)266882536 |w (DE-600)1468097-X |w (DE-576)281189838 |x 1431-0643 |7 nnas |a Non-commutative L-functions for p-adic representations over totally real fields |
| 773 | 1 | 8 | |g volume:24 |g year:2019 |g pages:1413-1511 |g extent:99 |a Non-commutative L-functions for p-adic representations over totally real fields |
| 856 | 4 | 0 | |u https://doi.org/10.25537/dm.2019v24.1413-1511 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.elibm.org/article/10011978 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200415 | ||
| 993 | |a Article | ||
| 994 | |a 2019 | ||
| 998 | |g 137118120 |a Witte, Malte |m 137118120:Witte, Malte |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PW137118120 |e 110100PW137118120 |e 110000PW137118120 |e 110400PW137118120 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1694524191 |e 3623335681 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Berlin, Germany ; Berlin","dateIssuedDisp":"1996-","publisher":"EMS Press, an imprint of the European Mathematical Society - EMS - Publishing House GmbH, Institut für Mathematik, Technische Universität Berlin ; Deutsche Mathematiker-Vereinigung e.V.","dateIssuedKey":"1996"}],"id":{"eki":["266882536"],"zdb":["1468097-X"],"issn":["1431-0643"]},"pubHistory":["1.1996 -"],"titleAlt":[{"title":"Journal der Deutschen Mathematiker-Vereinigung"},{"title":"Journal der Deutschen Mathematiker-Vereinigung"}],"part":{"text":"24(2019), Seite 1413-1511","volume":"24","extent":"99","year":"2019","pages":"1413-1511"},"note":["Gesehen am 21.06.2019"],"disp":"Non-commutative L-functions for p-adic representations over totally real fieldsDocumenta mathematica","type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"266882536","language":["ger"],"corporate":[{"role":"isb","display":"Deutsche Mathematiker-Vereinigung","roleDisplay":"Herausgebendes Organ"}],"title":[{"title_sort":"Documenta mathematica","title":"Documenta mathematica"}]}],"physDesc":[{"extent":"99 S."}],"id":{"doi":["10.25537/dm.2019v24.1413-1511"],"eki":["1694524191"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"2019"}],"name":{"displayForm":["Malte Witte"]},"recId":"1694524191","language":["eng"],"note":["Gesehen am 15.04.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title_sort":"Non-commutative L-functions for p-adic representations over totally real fields","title":"Non-commutative L-functions for p-adic representations over totally real fields"}],"person":[{"family":"Witte","given":"Malte","roleDisplay":"VerfasserIn","display":"Witte, Malte","role":"aut"}]} | ||
| SRT | |a WITTEMALTENONCOMMUTA2019 | ||