Non-commutative L-functions for p-adic representations over totally real fields
We prove a unicity result for the Non-Commutative L-Functions for p-Adic Representations over Totally Real Fields-functions appearing in the non-commutative Iwasawa main conjecture over totally real fields. We then consider continuous representations rho of the absolute Galois group of a totally rea...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2019
|
| In: |
Documenta mathematica
Year: 2019, Jahrgang: 24, Pages: 1413-1511 |
| ISSN: | 1431-0643 |
| DOI: | 10.25537/dm.2019v24.1413-1511 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.25537/dm.2019v24.1413-1511 Verlag, lizenzpflichtig, Volltext: https://www.elibm.org/article/10011978 |
| Verfasserangaben: | Malte Witte |
| Zusammenfassung: | We prove a unicity result for the Non-Commutative L-Functions for p-Adic Representations over Totally Real Fields-functions appearing in the non-commutative Iwasawa main conjecture over totally real fields. We then consider continuous representations rho of the absolute Galois group of a totally real field F on adic rings in the sense of Fukaya and Kato. Using our unicity result, we show that there exists a unique sensible definition of a non-commutative L-function for any such rho that factors through the Galois group of a possibly infinite totally real extension. We also consider the case of CM-extensions and discuss the relation with the equivariant main conjecture for realisations of abstract 1-motives of Greither and Popescu. |
|---|---|
| Beschreibung: | Gesehen am 15.04.2020 |
| Beschreibung: | Online Resource |
| ISSN: | 1431-0643 |
| DOI: | 10.25537/dm.2019v24.1413-1511 |