Non-commutative L-functions for p-adic representations over totally real fields

We prove a unicity result for the Non-Commutative L-Functions for p-Adic Representations over Totally Real Fields-functions appearing in the non-commutative Iwasawa main conjecture over totally real fields. We then consider continuous representations rho of the absolute Galois group of a totally rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Witte, Malte (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2019
In: Documenta mathematica
Year: 2019, Jahrgang: 24, Pages: 1413-1511
ISSN:1431-0643
DOI:10.25537/dm.2019v24.1413-1511
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.25537/dm.2019v24.1413-1511
Verlag, lizenzpflichtig, Volltext: https://www.elibm.org/article/10011978
Volltext
Verfasserangaben:Malte Witte
Beschreibung
Zusammenfassung:We prove a unicity result for the Non-Commutative L-Functions for p-Adic Representations over Totally Real Fields-functions appearing in the non-commutative Iwasawa main conjecture over totally real fields. We then consider continuous representations rho of the absolute Galois group of a totally real field F on adic rings in the sense of Fukaya and Kato. Using our unicity result, we show that there exists a unique sensible definition of a non-commutative L-function for any such rho that factors through the Galois group of a possibly infinite totally real extension. We also consider the case of CM-extensions and discuss the relation with the equivariant main conjecture for realisations of abstract 1-motives of Greither and Popescu.
Beschreibung:Gesehen am 15.04.2020
Beschreibung:Online Resource
ISSN:1431-0643
DOI:10.25537/dm.2019v24.1413-1511