Sprucing up the trees: error detection in treebanks

We present a method for detecting annotation errors in manually and automatically annotated dependency parse trees, based on ensemble parsing in combination with Bayesian inference, guided by active learning. We evaluate our method in different scenarios: (i) for error detection in dependency treeba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rehbein, Ines (VerfasserIn) , Ruppenhofer, Josef (VerfasserIn)
Dokumenttyp: Kapitel/Artikel Konferenzschrift
Sprache:Englisch
Veröffentlicht: August 2018
In: The 27th International Conference on Computational Linguistics - proceedings of the conference
Year: 2018, Pages: 107-118
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://www.aclweb.org/anthology/C18-1010
Volltext
Verfasserangaben:Ines Rehbein, Josef Ruppenhofer
Beschreibung
Zusammenfassung:We present a method for detecting annotation errors in manually and automatically annotated dependency parse trees, based on ensemble parsing in combination with Bayesian inference, guided by active learning. We evaluate our method in different scenarios: (i) for error detection in dependency treebanks and (ii) for improving parsing accuracy on in- and out-of-domain data.
Beschreibung:Gesehen am 15.04.2020
Beschreibung:Online Resource
ISBN:9781948087506