cCUDA: effective co-scheduling of concurrent kernels on GPUs

While GPUs are meantime omnipresent for many scientific and technical computations, they still continue to evolve as processors. An important recent feature is the ability to execute multiple kernels concurrently via queue streams. However, experiments show that different parameters including the be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shekofteh, S. Kazem (VerfasserIn) , Noori, Hamid Reza (VerfasserIn) , Naghibzadeh, Mahmoud (VerfasserIn) , Fröning, Holger (VerfasserIn) , Yazdi, Hadi Sadoghi (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2020
In: IEEE transactions on parallel and distributed systems
Year: 2020, Jahrgang: 31, Heft: 4, Pages: 766-778
ISSN:1558-2183
DOI:10.1109/TPDS.2019.2944602
Online-Zugang:Verlag, lizenzpflichtig: https://doi.org/10.1109/TPDS.2019.2944602
Volltext
Verfasserangaben:S.-Kazem Shekofteh, Hamid Noori, Mahmoud Naghibzadeh, Holger Fröning, Hadi Sadoghi Yazdi

MARC

LEADER 00000caa a2200000 c 4500
001 169526844X
003 DE-627
005 20220818045515.0
007 cr uuu---uuuuu
008 200421s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPDS.2019.2944602  |2 doi 
035 |a (DE-627)169526844X 
035 |a (DE-599)KXP169526844X 
035 |a (OCoLC)1341315979 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Shekofteh, S. Kazem  |d 1986-  |e VerfasserIn  |0 (DE-588)1189154854  |0 (DE-627)1667883631  |4 aut 
245 1 0 |a cCUDA  |b effective co-scheduling of concurrent kernels on GPUs  |c S.-Kazem Shekofteh, Hamid Noori, Mahmoud Naghibzadeh, Holger Fröning, Hadi Sadoghi Yazdi 
264 1 |c 2020 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date of Publication: 30 September 2019 
500 |a Gesehen am 21.04.2020 
520 |a While GPUs are meantime omnipresent for many scientific and technical computations, they still continue to evolve as processors. An important recent feature is the ability to execute multiple kernels concurrently via queue streams. However, experiments show that different parameters including the behavior of kernels, the order of kernel launches and other execution configurations, e.g., the number of concurrent thread blocks, may result in different execution time for concurrent kernel execution. Since kernels may have different resource requirements, they can be classified into different classes, which are traditionally assumed as either memory-bound or compute-bound. However, a kernel may belong to the different classes on different hardware according to the hardware resources. In this paper, the definition of kernel mix intensity is introduced. Based on this, a scheduling framework called concurrent CUDA (cCUDA) is proposed to co-schedule the concurrent kernels more efficiently. It first profiles and ranks kernels with different execution behaviors and then takes the kernel resource requirements into account to partition thread blocks of different kernels and overlap them to better utilize the GPU resources. Experimental results on real hardware demonstrate performance improvement in terms of execution time of up to 1.86x, and an average speedup of 1.28x for a wide range of kernels. cCUDA is available at https://github.com/kshekofteh/cCUDA. 
650 4 |a Analytical models 
650 4 |a Benchmark testing 
650 4 |a concurrent kernel execution 
650 4 |a Graphics processing units 
650 4 |a Hardware 
650 4 |a Kernel 
650 4 |a resource management 
650 4 |a scheduling 
650 4 |a Scheduling 
650 4 |a stream 
700 1 |a Noori, Hamid Reza  |d 1982-  |e VerfasserIn  |0 (DE-588)136385877  |0 (DE-627)58206872X  |0 (DE-576)300993609  |4 aut 
700 1 |a Naghibzadeh, Mahmoud  |e VerfasserIn  |4 aut 
700 1 |a Fröning, Holger  |d 1976-  |e VerfasserIn  |0 (DE-588)133209466  |0 (DE-627)538678658  |0 (DE-576)299696189  |4 aut 
700 1 |a Yazdi, Hadi Sadoghi  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE transactions on parallel and distributed systems  |d New York, NY : IEEE, 1990  |g 31(2020), 4, Seite 766-778  |h Online-Ressource  |w (DE-627)324490127  |w (DE-600)2027774-X  |w (DE-576)094111006  |x 1558-2183  |7 nnas 
773 1 8 |g volume:31  |g year:2020  |g number:4  |g pages:766-778  |g extent:13  |a cCUDA effective co-scheduling of concurrent kernels on GPUs 
856 4 0 |u https://doi.org/10.1109/TPDS.2019.2944602  |x Verlag  |z lizenzpflichtig 
951 |a AR 
992 |a 20200421 
993 |a Article 
994 |a 2020 
998 |g 133209466  |a Fröning, Holger  |m 133209466:Fröning, Holger  |d 700000  |d 720000  |e 700000PF133209466  |e 720000PF133209466  |k 0/700000/  |k 1/700000/720000/  |p 4 
999 |a KXP-PPN169526844X  |e 3627648188 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"169526844X","person":[{"family":"Shekofteh","role":"aut","given":"S. Kazem","display":"Shekofteh, S. Kazem"},{"role":"aut","family":"Noori","given":"Hamid Reza","display":"Noori, Hamid Reza"},{"role":"aut","family":"Naghibzadeh","display":"Naghibzadeh, Mahmoud","given":"Mahmoud"},{"given":"Holger","display":"Fröning, Holger","family":"Fröning","role":"aut"},{"display":"Yazdi, Hadi Sadoghi","given":"Hadi Sadoghi","family":"Yazdi","role":"aut"}],"note":["Date of Publication: 30 September 2019","Gesehen am 21.04.2020"],"language":["eng"],"name":{"displayForm":["S.-Kazem Shekofteh, Hamid Noori, Mahmoud Naghibzadeh, Holger Fröning, Hadi Sadoghi Yazdi"]},"relHost":[{"titleAlt":[{"title":"Transactions on parallel and distributed systems"},{"title":"TPDS"}],"disp":"Institute of Electrical and Electronics EngineersIEEE transactions on parallel and distributed systems","type":{"bibl":"periodical","media":"Online-Ressource"},"corporate":[{"display":"Institute of Electrical and Electronics Engineers","role":"aut"}],"note":["Gesehen am 07.03.19"],"pubHistory":["1.1990 -"],"part":{"text":"31(2020), 4, Seite 766-778","issue":"4","extent":"13","pages":"766-778","volume":"31","year":"2020"},"language":["eng"],"origin":[{"publisherPlace":"New York, NY","dateIssuedKey":"1990","dateIssuedDisp":"1990-","publisher":"IEEE"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2027774-X"],"eki":["324490127"],"issn":["1558-2183"]},"title":[{"subtitle":"TPDS","title":"IEEE transactions on parallel and distributed systems","title_sort":"IEEE transactions on parallel and distributed systems"}],"recId":"324490127"}],"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"2020"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"subtitle":"effective co-scheduling of concurrent kernels on GPUs","title":"cCUDA","title_sort":"cCUDA"}],"id":{"doi":["10.1109/TPDS.2019.2944602"],"eki":["169526844X"]},"physDesc":[{"extent":"13 S."}]} 
SRT |a SHEKOFTEHSCCUDA2020