Beyond one-hot encoding: lower dimensional target embedding
Target encoding plays a central role when learning Convolutional Neural Networks. In this realm, one-hot encoding is the most prevalent strategy due to its simplicity. However, this so widespread encoding schema assumes a flat label space, thus ignoring rich relationships existing among labels that...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
11 May 2018
|
| In: |
Image and vision computing
Year: 2018, Jahrgang: 75, Pages: 21-31 |
| DOI: | 10.1016/j.imavis.2018.04.004 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.imavis.2018.04.004 Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S0262885618300623 |
| Verfasserangaben: | Pau Rodríguez, Miguel A. Bautista, Jordi Gonzàlez, Sergio Escalera |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1695324978 | ||
| 003 | DE-627 | ||
| 005 | 20220818045917.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200421s2018 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.imavis.2018.04.004 |2 doi | |
| 035 | |a (DE-627)1695324978 | ||
| 035 | |a (DE-599)KXP1695324978 | ||
| 035 | |a (OCoLC)1341316057 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 28 |2 sdnb | ||
| 100 | 1 | |a Rodriguez, Pau |e VerfasserIn |0 (DE-588)1208730339 |0 (DE-627)1695350812 |4 aut | |
| 245 | 1 | 0 | |a Beyond one-hot encoding |b lower dimensional target embedding |c Pau Rodríguez, Miguel A. Bautista, Jordi Gonzàlez, Sergio Escalera |
| 264 | 1 | |c 11 May 2018 | |
| 300 | |a 11 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 21.04.2020 | ||
| 520 | |a Target encoding plays a central role when learning Convolutional Neural Networks. In this realm, one-hot encoding is the most prevalent strategy due to its simplicity. However, this so widespread encoding schema assumes a flat label space, thus ignoring rich relationships existing among labels that can be exploited during training. In large-scale datasets, data does not span the full label space, but instead lies in a low-dimensional output manifold. Following this observation, we embed the targets into a low-dimensional space, drastically improving convergence speed while preserving accuracy. Our contribution is two fold: (i) We show that random projections of the label space are a valid tool to find such lower dimensional embeddings, boosting dramatically convergence rates at zero computational cost; and (ii) we propose a normalized eigenrepresentation of the class manifold that encodes the targets with minimal information loss, improving the accuracy of random projections encoding while enjoying the same convergence rates. Experiments on CIFAR-100, CUB200-2011, Imagenet, and MIT Places demonstrate that the proposed approach drastically improves convergence speed while reaching very competitive accuracy rates. | ||
| 650 | 4 | |a Computer vision | |
| 650 | 4 | |a Deep learning | |
| 650 | 4 | |a Error correcting output codes | |
| 650 | 4 | |a Output embeddings | |
| 700 | 1 | |a Bautista, Miguel |e VerfasserIn |0 (DE-588)115223787X |0 (DE-627)1013721810 |0 (DE-576)49975705X |4 aut | |
| 700 | 1 | |a Gonzàlez, Jordi |e VerfasserIn |4 aut | |
| 700 | 1 | |a Escalera, Sergio |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Image and vision computing |d Amsterdam [u.a.] : Elsevier Science, 1983 |g 75(2018), Seite 21-31 |h Online-Ressource |w (DE-627)270938087 |w (DE-600)1478755-6 |w (DE-576)078316820 |7 nnas |a Beyond one-hot encoding lower dimensional target embedding |
| 773 | 1 | 8 | |g volume:75 |g year:2018 |g pages:21-31 |g extent:11 |a Beyond one-hot encoding lower dimensional target embedding |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.imavis.2018.04.004 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0262885618300623 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200421 | ||
| 993 | |a Article | ||
| 994 | |a 2018 | ||
| 998 | |g 115223787X |a Bautista, Miguel |m 115223787X:Bautista, Miguel |d 700000 |d 708070 |e 700000PB115223787X |e 708070PB115223787X |k 0/700000/ |k 1/700000/708070/ |p 2 | ||
| 999 | |a KXP-PPN1695324978 |e 3627845811 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"11 S."}],"relHost":[{"language":["eng"],"recId":"270938087","note":["Gesehen am 03.02.15"],"disp":"Beyond one-hot encoding lower dimensional target embeddingImage and vision computing","type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"volume":"75","text":"75(2018), Seite 21-31","extent":"11","year":"2018","pages":"21-31"},"pubHistory":["1.1983 - 32.2014; Vol. 33.2015 -"],"title":[{"title_sort":"Image and vision computing","title":"Image and vision computing"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["270938087"],"zdb":["1478755-6"]},"origin":[{"publisherPlace":"Amsterdam [u.a.]","publisher":"Elsevier Science","dateIssuedKey":"1983","dateIssuedDisp":"1983-"}]}],"name":{"displayForm":["Pau Rodríguez, Miguel A. Bautista, Jordi Gonzàlez, Sergio Escalera"]},"origin":[{"dateIssuedDisp":"11 May 2018","dateIssuedKey":"2018"}],"id":{"doi":["10.1016/j.imavis.2018.04.004"],"eki":["1695324978"]},"note":["Gesehen am 21.04.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1695324978","person":[{"role":"aut","display":"Rodriguez, Pau","roleDisplay":"VerfasserIn","given":"Pau","family":"Rodriguez"},{"roleDisplay":"VerfasserIn","display":"Bautista, Miguel","role":"aut","family":"Bautista","given":"Miguel"},{"given":"Jordi","family":"Gonzàlez","role":"aut","display":"Gonzàlez, Jordi","roleDisplay":"VerfasserIn"},{"family":"Escalera","given":"Sergio","display":"Escalera, Sergio","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title":"Beyond one-hot encoding","subtitle":"lower dimensional target embedding","title_sort":"Beyond one-hot encoding"}]} | ||
| SRT | |a RODRIGUEZPBEYONDONEH1120 | ||