The Göpel variety

In this paper, we will prove that the six-dimensional Göpel variety in P134 is generated by 120 linear, 35 cubic, and 35 quartic relations. This result was already obtained in [Ren et al. 13], but the authors used a statement in [Coble 29] saying that the Göpel variety set theoretically is generat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Freitag, Eberhard (VerfasserIn) , Salvati Manni, Riccardo (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2019
In: Experimental mathematics
Year: 2017, Jahrgang: 28, Heft: 3, Pages: 284-291
ISSN:1944-950X
DOI:10.1080/10586458.2017.1389322
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1080/10586458.2017.1389322
Volltext
Verfasserangaben:Eberhard Freitag, Riccardo Salvati Manni
Beschreibung
Zusammenfassung:In this paper, we will prove that the six-dimensional Göpel variety in P134 is generated by 120 linear, 35 cubic, and 35 quartic relations. This result was already obtained in [Ren et al. 13], but the authors used a statement in [Coble 29] saying that the Göpel variety set theoretically is generated by the linear and cubic relations alone. Unfortunately this statement is false. There are 120 extra points. Nevertheless the results stated in [Ren et al. 13] are correct. There are required several changes that we will illustrate in some detail.
Beschreibung:Published online: 14 Dec 2017
Gesehen am 23.04.2020
Beschreibung:Online Resource
ISSN:1944-950X
DOI:10.1080/10586458.2017.1389322