The Göpel variety
In this paper, we will prove that the six-dimensional Göpel variety in P134 is generated by 120 linear, 35 cubic, and 35 quartic relations. This result was already obtained in [Ren et al. 13], but the authors used a statement in [Coble 29] saying that the Göpel variety set theoretically is generat...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2019
|
| In: |
Experimental mathematics
Year: 2017, Jahrgang: 28, Heft: 3, Pages: 284-291 |
| ISSN: | 1944-950X |
| DOI: | 10.1080/10586458.2017.1389322 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1080/10586458.2017.1389322 |
| Verfasserangaben: | Eberhard Freitag, Riccardo Salvati Manni |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1695793277 | ||
| 003 | DE-627 | ||
| 005 | 20220818052008.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200423r20192017xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1080/10586458.2017.1389322 |2 doi | |
| 035 | |a (DE-627)1695793277 | ||
| 035 | |a (DE-599)KXP1695793277 | ||
| 035 | |a (OCoLC)1341316432 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Freitag, Eberhard |d 1942- |e VerfasserIn |0 (DE-588)142950017 |0 (DE-627)640929273 |0 (DE-576)33428290X |4 aut | |
| 245 | 1 | 4 | |a The Göpel variety |c Eberhard Freitag, Riccardo Salvati Manni |
| 264 | 1 | |c 2019 | |
| 300 | |a 8 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Published online: 14 Dec 2017 | ||
| 500 | |a Gesehen am 23.04.2020 | ||
| 520 | |a In this paper, we will prove that the six-dimensional Göpel variety in P134 is generated by 120 linear, 35 cubic, and 35 quartic relations. This result was already obtained in [Ren et al. 13], but the authors used a statement in [Coble 29] saying that the Göpel variety set theoretically is generated by the linear and cubic relations alone. Unfortunately this statement is false. There are 120 extra points. Nevertheless the results stated in [Ren et al. 13] are correct. There are required several changes that we will illustrate in some detail. | ||
| 534 | |c 2017 | ||
| 650 | 4 | |a 14J15 | |
| 650 | 4 | |a Göpel variety | |
| 650 | 4 | |a modular forms | |
| 650 | 4 | |a moduli space | |
| 650 | 4 | |a thetanullwerte | |
| 700 | 1 | |a Salvati Manni, Riccardo |d 1956- |e VerfasserIn |0 (DE-588)117646101X |0 (DE-627)1047463024 |0 (DE-576)516648950 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Experimental mathematics |d Abingdon : Taylor & Francis, 1992 |g 28(2019), 3, Seite 284-291 |h Online-Ressource |w (DE-627)300897405 |w (DE-600)1483532-0 |w (DE-576)281190763 |x 1944-950X |7 nnas |a The Göpel variety |
| 773 | 1 | 8 | |g volume:28 |g year:2019 |g number:3 |g pages:284-291 |g extent:8 |a The Göpel variety |
| 856 | 4 | 0 | |u https://doi.org/10.1080/10586458.2017.1389322 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200423 | ||
| 993 | |a Article | ||
| 994 | |a 2019 | ||
| 998 | |g 142950017 |a Freitag, Eberhard |m 142950017:Freitag, Eberhard |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PF142950017 |e 110100PF142950017 |e 110000PF142950017 |e 110400PF142950017 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1695793277 |e 363122981X | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"pubHistory":["1.1992 -"],"part":{"year":"2019","issue":"3","pages":"284-291","text":"28(2019), 3, Seite 284-291","volume":"28","extent":"8"},"disp":"The Göpel varietyExperimental mathematics","note":["Gesehen am 21.10.2025"],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"300897405","language":["eng"],"title":[{"title_sort":"Experimental mathematics","title":"Experimental mathematics"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Abingdon ; Boston, Mass. ; Wellesley, Mass.","dateIssuedKey":"1992","publisher":"Taylor & Francis ; Jones and Bartlett ; A K Peters","dateIssuedDisp":"1992-"}],"id":{"issn":["1944-950X"],"eki":["300897405"],"zdb":["1483532-0"]}}],"physDesc":[{"extent":"8 S."}],"id":{"doi":["10.1080/10586458.2017.1389322"],"eki":["1695793277"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"2019"}],"name":{"displayForm":["Eberhard Freitag, Riccardo Salvati Manni"]},"language":["eng"],"recId":"1695793277","note":["Published online: 14 Dec 2017","Gesehen am 23.04.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"The Göpel variety","title_sort":"Göpel variety"}],"person":[{"given":"Eberhard","family":"Freitag","role":"aut","display":"Freitag, Eberhard","roleDisplay":"VerfasserIn"},{"family":"Salvati Manni","given":"Riccardo","display":"Salvati Manni, Riccardo","roleDisplay":"VerfasserIn","role":"aut"}]} | ||
| SRT | |a FREITAGEBEGOEPELVARI2019 | ||