Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas

Background Deep learning convolutional neural networks (CNN) may assist physicians in the diagnosis of melanoma. The capacity of a CNN to differentiate melanomas from combined naevi, the latter representing well-known melanoma simulators, has not been investigated. Objective To assess the diagnostic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Müller-Christmann, Christine (VerfasserIn) , Blum, A. (VerfasserIn) , Buhl, T. (VerfasserIn) , Mitteldorf, C. (VerfasserIn) , Hofmann‐Wellenhof, R. (VerfasserIn) , Deinlein, T. (VerfasserIn) , Stolz, W. (VerfasserIn) , Trennheuser, Lukas (VerfasserIn) , Cussigh, Christiane (VerfasserIn) , Deltgen, David (VerfasserIn) , Winkler, Julia K. (VerfasserIn) , Toberer, Ferdinand (VerfasserIn) , Enk, Alexander (VerfasserIn) , Rosenberger, A. (VerfasserIn) , Hänßle, Holger (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 19 December 2019
In: Journal of the European Academy of Dermatology and Venereology
Year: 2020, Jahrgang: 34, Heft: 6, Pages: 1355-1361
ISSN:1468-3083
DOI:10.1111/jdv.16165
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1111/jdv.16165
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1111/jdv.16165
Volltext
Verfasserangaben:C. Fink, A. Blum, T. Buhl, C. Mitteldorf, R. Hofmann‐Wellenhof, T. Deinlein, W. Stolz, L. Trennheuser, C. Cussigh, D. Deltgen, J.K. Winkler, F. Toberer, A. Enk, A. Rosenberger, H.A. Haenssle

MARC

LEADER 00000caa a2200000 c 4500
001 1695832965
003 DE-627
005 20221028105517.0
007 cr uuu---uuuuu
008 200423s2019 xx |||||o 00| ||eng c
024 7 |a 10.1111/jdv.16165  |2 doi 
035 |a (DE-627)1695832965 
035 |a (DE-599)KXP1695832965 
035 |a (OCoLC)1264304754 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Müller-Christmann, Christine  |d 1983-  |e VerfasserIn  |0 (DE-588)143738127  |0 (DE-627)654330387  |0 (DE-576)338647651  |4 aut 
245 1 0 |a Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas  |c C. Fink, A. Blum, T. Buhl, C. Mitteldorf, R. Hofmann‐Wellenhof, T. Deinlein, W. Stolz, L. Trennheuser, C. Cussigh, D. Deltgen, J.K. Winkler, F. Toberer, A. Enk, A. Rosenberger, H.A. Haenssle 
264 1 |c 19 December 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 23.04.2020 
520 |a Background Deep learning convolutional neural networks (CNN) may assist physicians in the diagnosis of melanoma. The capacity of a CNN to differentiate melanomas from combined naevi, the latter representing well-known melanoma simulators, has not been investigated. Objective To assess the diagnostic performance of a CNN when used to differentiate melanomas from combined naevi in comparison with dermatologists. Methods In this study, a CNN with regulatory approval for the European market (Moleanalyzer-Pro, FotoFinder Systems GmbH, Bad Birnbach, Germany) was used. We attained a dichotomous classification (benign, malignant) in dermoscopic images of 36 combined naevi and 36 melanomas with a mean Breslow thickness of 1.3 mm. Primary outcome measures were the CNN's sensitivity, specificity and the diagnostic odds ratio (DOR) in comparison with 11 dermatologists with different levels of experience. Results The CNN revealed a sensitivity, specificity and DOR of 97.1% (95% CI [82.7-99.6]), 78.8% (95% CI [62.8-89.1.3]) and 34 (95% CI [4.8-239]), respectively. Dermatologists showed a lower mean sensitivity, specificity and DOR of 90.6% (95% CI [84.1-94.7]; P = 0.092), 71.0% (95% CI [62.6-78.1]; P = 0.256) and 24 (95% CI [11.6-48.4]; P = 0.1114). Under the assumption that dermatologists use the CNN to verify their (initial) melanoma diagnosis, dermatologists achieve an increased specificity of 90.3% (95% CI [79.8-95.6]) at an almost unchanged sensitivity. The largest benefit was observed in ‘beginners’, who performed worst without CNN verification (DOR = 12) but best with CNN verification (DOR = 98). Conclusion The tested CNN more accurately classified combined naevi and melanomas in comparison with trained dermatologists. Their diagnostic performance could be improved if the CNN was used to confirm/overrule an initial melanoma diagnosis. Application of a CNN may therefore be of benefit to clinicians. 
700 1 |a Blum, A.  |e VerfasserIn  |4 aut 
700 1 |a Buhl, T.  |e VerfasserIn  |4 aut 
700 1 |a Mitteldorf, C.  |e VerfasserIn  |4 aut 
700 1 |a Hofmann‐Wellenhof, R.  |e VerfasserIn  |4 aut 
700 1 |a Deinlein, T.  |e VerfasserIn  |4 aut 
700 1 |a Stolz, W.  |e VerfasserIn  |4 aut 
700 1 |a Trennheuser, Lukas  |d 1989-  |e VerfasserIn  |0 (DE-588)1122573820  |0 (DE-627)87573698X  |0 (DE-576)481373098  |4 aut 
700 1 |a Cussigh, Christiane  |d 1990-  |e VerfasserIn  |0 (DE-588)1194080421  |0 (DE-627)1675881952  |4 aut 
700 1 |a Deltgen, David  |e VerfasserIn  |0 (DE-588)1208876783  |0 (DE-627)1695832159  |4 aut 
700 1 |a Winkler, Julia K.  |d 1987-  |e VerfasserIn  |0 (DE-588)1038218993  |0 (DE-627)756780721  |0 (DE-576)392196514  |4 aut 
700 1 |a Toberer, Ferdinand  |d 1981-  |e VerfasserIn  |0 (DE-588)102155832X  |0 (DE-627)715821962  |0 (DE-576)362852367  |4 aut 
700 1 |a Enk, Alexander  |d 1963-  |e VerfasserIn  |0 (DE-588)1032757140  |0 (DE-627)739272535  |0 (DE-576)166173517  |4 aut 
700 1 |a Rosenberger, A.  |e VerfasserIn  |4 aut 
700 1 |a Hänßle, Holger  |e VerfasserIn  |0 (DE-588)1074971531  |0 (DE-627)832791733  |0 (DE-576)443174598  |4 aut 
773 0 8 |i Enthalten in  |a European Academy of Dermatology and Venereology  |t Journal of the European Academy of Dermatology and Venereology  |d Oxford [u.a.] : Wiley-Blackwell, 1991  |g 34(2020), 6, Seite 1355-1361  |h Online-Ressource  |w (DE-627)320616665  |w (DE-600)2022088-1  |w (DE-576)091144337  |x 1468-3083  |7 nnas 
773 1 8 |g volume:34  |g year:2020  |g number:6  |g pages:1355-1361  |a Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas 
856 4 0 |u https://doi.org/10.1111/jdv.16165  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1111/jdv.16165  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20200423 
993 |a Article 
994 |a 2019 
998 |g 1074971531  |a Hänßle, Holger  |m 1074971531:Hänßle, Holger  |d 910000  |d 911300  |e 910000PH1074971531  |e 911300PH1074971531  |k 0/910000/  |k 1/910000/911300/  |p 15  |y j 
998 |g 1032757140  |a Enk, Alexander  |m 1032757140:Enk, Alexander  |d 910000  |d 911300  |e 910000PE1032757140  |e 911300PE1032757140  |k 0/910000/  |k 1/910000/911300/  |p 13 
998 |g 102155832X  |a Toberer, Ferdinand  |m 102155832X:Toberer, Ferdinand  |d 910000  |d 911300  |e 910000PT102155832X  |e 911300PT102155832X  |k 0/910000/  |k 1/910000/911300/  |p 12 
998 |g 1038218993  |a Winkler, Julia K.  |m 1038218993:Winkler, Julia K.  |d 910000  |d 911300  |e 910000PW1038218993  |e 911300PW1038218993  |k 0/910000/  |k 1/910000/911300/  |p 11 
998 |g 1208876783  |a Deltgen, David  |m 1208876783:Deltgen, David  |d 910000  |d 911300  |e 910000PD1208876783  |e 911300PD1208876783  |k 0/910000/  |k 1/910000/911300/  |p 10 
998 |g 1194080421  |a Cussigh, Christiane  |m 1194080421:Cussigh, Christiane  |d 910000  |d 911300  |e 910000PC1194080421  |e 911300PC1194080421  |k 0/910000/  |k 1/910000/911300/  |p 9 
998 |g 1122573820  |a Trennheuser, Lukas  |m 1122573820:Trennheuser, Lukas  |d 910000  |d 911300  |e 910000PT1122573820  |e 911300PT1122573820  |k 0/910000/  |k 1/910000/911300/  |p 8 
998 |g 143738127  |a Müller-Christmann, Christine  |m 143738127:Müller-Christmann, Christine  |d 910000  |d 911300  |e 910000PM143738127  |e 911300PM143738127  |k 0/910000/  |k 1/910000/911300/  |p 1  |x j 
999 |a KXP-PPN1695832965  |e 3631413483 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["1695832965"],"doi":["10.1111/jdv.16165"]},"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"19 December 2019"}],"person":[{"display":"Müller-Christmann, Christine","family":"Müller-Christmann","given":"Christine","role":"aut"},{"role":"aut","display":"Blum, A.","family":"Blum","given":"A."},{"role":"aut","given":"T.","display":"Buhl, T.","family":"Buhl"},{"given":"C.","family":"Mitteldorf","display":"Mitteldorf, C.","role":"aut"},{"role":"aut","display":"Hofmann‐Wellenhof, R.","family":"Hofmann‐Wellenhof","given":"R."},{"given":"T.","family":"Deinlein","display":"Deinlein, T.","role":"aut"},{"role":"aut","family":"Stolz","display":"Stolz, W.","given":"W."},{"display":"Trennheuser, Lukas","family":"Trennheuser","given":"Lukas","role":"aut"},{"family":"Cussigh","display":"Cussigh, Christiane","given":"Christiane","role":"aut"},{"given":"David","family":"Deltgen","display":"Deltgen, David","role":"aut"},{"role":"aut","display":"Winkler, Julia K.","family":"Winkler","given":"Julia K."},{"given":"Ferdinand","display":"Toberer, Ferdinand","family":"Toberer","role":"aut"},{"display":"Enk, Alexander","family":"Enk","given":"Alexander","role":"aut"},{"display":"Rosenberger, A.","family":"Rosenberger","given":"A.","role":"aut"},{"role":"aut","given":"Holger","family":"Hänßle","display":"Hänßle, Holger"}],"title":[{"title_sort":"Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas","title":"Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas"}],"relHost":[{"titleAlt":[{"title":"JEADV"}],"title":[{"subtitle":"JEADV","title":"Journal of the European Academy of Dermatology and Venereology","title_sort":"Journal of the European Academy of Dermatology and Venereology"}],"physDesc":[{"extent":"Online-Ressource"}],"part":{"volume":"34","year":"2020","pages":"1355-1361","text":"34(2020), 6, Seite 1355-1361","issue":"6"},"corporate":[{"role":"aut","display":"European Academy of Dermatology and Venereology"}],"id":{"doi":["10.1111/(ISSN)1468-3083"],"eki":["320616665"],"issn":["1468-3083"],"zdb":["2022088-1"]},"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"origin":[{"dateIssuedDisp":"1991-","publisherPlace":"Oxford [u.a.] ; Amsterdam [u.a.] ; Oxford ; Oxford [u.a.]","publisher":"Wiley-Blackwell ; Elsevier ; Blackwell Science ; Blackwell","dateIssuedKey":"1991"}],"pubHistory":["1.1991 -"],"recId":"320616665","disp":"European Academy of Dermatology and VenereologyJournal of the European Academy of Dermatology and Venereology"}],"name":{"displayForm":["C. Fink, A. Blum, T. Buhl, C. Mitteldorf, R. Hofmann‐Wellenhof, T. Deinlein, W. Stolz, L. Trennheuser, C. Cussigh, D. Deltgen, J.K. Winkler, F. Toberer, A. Enk, A. Rosenberger, H.A. Haenssle"]},"note":["Gesehen am 23.04.2020"],"recId":"1695832965"} 
SRT |a MUELLERCHRDIAGNOSTIC1920