Nonequilibrium quantum spin dynamics from two-particle irreducible functional integral techniques in the Schwinger boson representation

We present a nonequilibrium quantum field theory approach to the initial-state dynamics of spin models based on two-particle irreducible (2PI) functional integral techniques. It employs a mapping of spins to Schwinger bosons for arbitrary spin interactions and spin lengths. At next-to-leading order...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schuckert, Alexander (VerfasserIn) , Piñeiro Orioli, Asier (VerfasserIn) , Berges, Jürgen (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 10 December 2018
In: Physical review
Year: 2018, Jahrgang: 98, Heft: 22
ISSN:2469-9969
DOI:10.1103/PhysRevB.98.224304
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevB.98.224304
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevB.98.224304
Volltext
Verfasserangaben:A. Schuckert, A. Piñeiro Orioli, and J. Berges
Beschreibung
Zusammenfassung:We present a nonequilibrium quantum field theory approach to the initial-state dynamics of spin models based on two-particle irreducible (2PI) functional integral techniques. It employs a mapping of spins to Schwinger bosons for arbitrary spin interactions and spin lengths. At next-to-leading order (NLO) in an expansion in the number of field components, a wide range of nonperturbative dynamical phenomena are shown to be captured, including relaxation of magnetization in a 3D long-range interacting system with quenched disorder, different relaxation behavior on both sides of a quantum phase transition, and the crossover from relaxation to arrest of dynamics in a disordered spin chain previously shown to exhibit many-body localization. Where applicable, we employ alternative state-of-the-art techniques and find rather good agreement with our 2PI NLO results. As our method can handle large system sizes and converges relatively quickly to its thermodynamic limit, it opens the possibility to study these phenomena in higher dimensions in regimes in which no other efficient methods exist. Furthermore, the approach to classical dynamics can be investigated as the spin length is increased.
Beschreibung:Gesehen am 08.12.2020
Beschreibung:Online Resource
ISSN:2469-9969
DOI:10.1103/PhysRevB.98.224304