Renormalizing a viscous fluid model for large scale structure formation

Using the Stochastic Adhesion Model (SAM) as a simple toy model for cosmic structure formation, we study renormalization and the removal of the cutoff dependence from loop integrals in perturbative calculations. SAM shares the same symmetry with the full system of continuity+Euler equations and incl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Führer, Florian (VerfasserIn) , Rigopoulos, Gerasimos (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 26 Jan 2016
In: Journal of cosmology and astroparticle physics
Year: 2016, Heft: 2, Pages: 1-20
ISSN:1475-7516
DOI:10.1088/1475-7516/2016/02/032
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1088/1475-7516/2016/02/032
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1509.03073
Volltext
Verfasserangaben:Florian Führer and Gerasimos Rigopoulos
Beschreibung
Zusammenfassung:Using the Stochastic Adhesion Model (SAM) as a simple toy model for cosmic structure formation, we study renormalization and the removal of the cutoff dependence from loop integrals in perturbative calculations. SAM shares the same symmetry with the full system of continuity+Euler equations and includes a viscosity term and a stochastic noise term, similar to the effective theories recently put forward to model CDM clustering. We show in this context that if the viscosity and noise terms are treated as perturbative corrections to the standard eulerian perturbation theory, they are necessarily non-local in time. To ensure Galilean Invariance higher order vertices related to the viscosity and the noise must then be added and we explicitly show at one-loop that these terms act as counter terms for vertex diagrams. The Ward Identities ensure that the non-local-in-time theory can be renormalized consistently. Another possibility is to include the viscosity in the linear propagator, resulting in exponential damping at high wavenumber. The resulting local-in-time theory is then renormalizable to one loop, requiring less free parameters for its renormalization.
Beschreibung:Gesehen am 24.04.2020
Das "PDF" weist 14 Seiten auf
Beschreibung:Online Resource
ISSN:1475-7516
DOI:10.1088/1475-7516/2016/02/032