End-to-end learning of decision trees and forests

Conventional decision trees have a number of favorable properties, including a small computational footprint, interpretability, and the ability to learn from little training data. However, they lack a key quality that has helped fuel the deep learning revolution: that of being end-to-end trainable....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hehn, Thomas M. (VerfasserIn) , Kooij, Julian F. P. (VerfasserIn) , Hamprecht, Fred (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2020
In: International journal of computer vision
Year: 2020, Jahrgang: 128, Heft: 4, Pages: 997-1011
ISSN:1573-1405
DOI:10.1007/s11263-019-01237-6
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s11263-019-01237-6
Volltext
Verfasserangaben:Thomas M. Hehn, Julian F.P. Kooij, Fred A. Hamprecht

MARC

LEADER 00000caa a2200000 c 4500
001 1696146666
003 DE-627
005 20220818054006.0
007 cr uuu---uuuuu
008 200427s2020 xx |||||o 00| ||eng c
024 7 |a 10.1007/s11263-019-01237-6  |2 doi 
035 |a (DE-627)1696146666 
035 |a (DE-599)KXP1696146666 
035 |a (OCoLC)1341316939 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Hehn, Thomas M.  |e VerfasserIn  |0 (DE-588)1209070316  |0 (DE-627)1696148332  |4 aut 
245 1 0 |a End-to-end learning of decision trees and forests  |c Thomas M. Hehn, Julian F.P. Kooij, Fred A. Hamprecht 
264 1 |c 2020 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published online: 9 October 2019 
500 |a Gesehen am 27.04.2020 
520 |a Conventional decision trees have a number of favorable properties, including a small computational footprint, interpretability, and the ability to learn from little training data. However, they lack a key quality that has helped fuel the deep learning revolution: that of being end-to-end trainable. Kontschieder et al. (ICCV, 2015) have addressed this deficit, but at the cost of losing a main attractive trait of decision trees: the fact that each sample is routed along a small subset of tree nodes only. We here present an end-to-end learning scheme for deterministic decision trees and decision forests. Thanks to a new model and expectation-maximization training scheme, the trees are fully probabilistic at train time, but after an annealing process become deterministic at test time. In experiments we explore the effect of annealing visually and quantitatively, and find that our method performs on par or superior to standard learning algorithms for oblique decision trees and forests. We further demonstrate on image datasets that our approach can learn more complex split functions than common oblique ones, and facilitates interpretability through spatial regularization. 
700 1 |a Kooij, Julian F. P.  |e VerfasserIn  |0 (DE-588)1209070456  |0 (DE-627)1696148545  |4 aut 
700 1 |a Hamprecht, Fred  |e VerfasserIn  |0 (DE-588)1020505605  |0 (DE-627)691240280  |0 (DE-576)360605516  |4 aut 
773 0 8 |i Enthalten in  |t International journal of computer vision  |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1987  |g 128(2020), 4, Seite 997-1011  |h Online-Ressource  |w (DE-627)271350083  |w (DE-600)1479903-0  |w (DE-576)102669104  |x 1573-1405  |7 nnas  |a End-to-end learning of decision trees and forests 
773 1 8 |g volume:128  |g year:2020  |g number:4  |g pages:997-1011  |g extent:15  |a End-to-end learning of decision trees and forests 
856 4 0 |u https://doi.org/10.1007/s11263-019-01237-6  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200427 
993 |a Article 
994 |a 2020 
998 |g 1020505605  |a Hamprecht, Fred  |m 1020505605:Hamprecht, Fred  |d 700000  |d 708070  |d 700000  |d 728500  |e 700000PH1020505605  |e 708070PH1020505605  |e 700000PH1020505605  |e 728500PH1020505605  |k 0/700000/  |k 1/700000/708070/  |k 0/700000/  |k 1/700000/728500/  |p 3  |y j 
999 |a KXP-PPN1696146666  |e 3636939416 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Thomas M. Hehn, Julian F.P. Kooij, Fred A. Hamprecht"]},"physDesc":[{"extent":"15 S."}],"recId":"1696146666","relHost":[{"recId":"271350083","pubHistory":["1.1987 -"],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1573-1405"],"eki":["271350083"],"zdb":["1479903-0"]},"disp":"End-to-end learning of decision trees and forestsInternational journal of computer vision","language":["eng"],"part":{"volume":"128","extent":"15","pages":"997-1011","text":"128(2020), 4, Seite 997-1011","year":"2020","issue":"4"},"title":[{"title":"International journal of computer vision","title_sort":"International journal of computer vision"}],"note":["Gesehen am 01.11.05"],"origin":[{"dateIssuedDisp":"1987-","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]","publisher":"Springer Science + Business Media B.V ; Kluwer","dateIssuedKey":"1987"}],"type":{"bibl":"periodical","media":"Online-Ressource"}}],"id":{"doi":["10.1007/s11263-019-01237-6"],"eki":["1696146666"]},"person":[{"family":"Hehn","display":"Hehn, Thomas M.","role":"aut","given":"Thomas M."},{"family":"Kooij","display":"Kooij, Julian F. P.","given":"Julian F. P.","role":"aut"},{"given":"Fred","role":"aut","display":"Hamprecht, Fred","family":"Hamprecht"}],"origin":[{"dateIssuedDisp":"2020","dateIssuedKey":"2020"}],"note":["Published online: 9 October 2019","Gesehen am 27.04.2020"],"title":[{"title_sort":"End-to-end learning of decision trees and forests","title":"End-to-end learning of decision trees and forests"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"]} 
SRT |a HEHNTHOMASENDTOENDLE2020