Uncertainty-aware organ classification for surgical data science applications in laparoscopy

OBJECTIVE: Surgical data science is evolving into a research field that aims to observe everything occurring within and around the treatment process to provide situation-aware data-driven assistance. In the context of endoscopic video analysis, the accurate classification of organs in the field of v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Moccia, Sara (VerfasserIn) , Wirkert, Sebastian J. (VerfasserIn) , Kenngott, Hannes Götz (VerfasserIn) , Vemuri, Anant S. (VerfasserIn) , Apitz, Martin (VerfasserIn) , Mayer, Benjamin (VerfasserIn) , De Momi, Elena (VerfasserIn) , Mattos, Leonardo S. (VerfasserIn) , Maier-Hein, Lena (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 9 March 2018
In: IEEE transactions on biomedical engineering
Year: 2018, Jahrgang: 65, Heft: 11, Pages: 2649-2659
ISSN:1558-2531
DOI:10.1109/TBME.2018.2813015
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1109/TBME.2018.2813015
Volltext
Verfasserangaben:Sara Moccia, Sebastian J. Wirkert, Hannes Kenngott, Anant S. Vemuri, Martin Apitz, Benjamin Mayer, Elena De Momi, Senior Member, IEEE, Leonardo S. Mattos, Member, IEEE, and Lena Maier-Hein

MARC

LEADER 00000caa a2200000 c 4500
001 1696943191
003 DE-627
005 20220818062931.0
007 cr uuu---uuuuu
008 200430s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TBME.2018.2813015  |2 doi 
035 |a (DE-627)1696943191 
035 |a (DE-599)KXP1696943191 
035 |a (OCoLC)1341317759 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Moccia, Sara  |e VerfasserIn  |0 (DE-588)1209302209  |0 (DE-627)1696950767  |4 aut 
245 1 0 |a Uncertainty-aware organ classification for surgical data science applications in laparoscopy  |c Sara Moccia, Sebastian J. Wirkert, Hannes Kenngott, Anant S. Vemuri, Martin Apitz, Benjamin Mayer, Elena De Momi, Senior Member, IEEE, Leonardo S. Mattos, Member, IEEE, and Lena Maier-Hein 
264 1 |c 9 March 2018 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 30.04.2020 
520 |a OBJECTIVE: Surgical data science is evolving into a research field that aims to observe everything occurring within and around the treatment process to provide situation-aware data-driven assistance. In the context of endoscopic video analysis, the accurate classification of organs in the field of view of the camera proffers a technical challenge. Herein, we propose a new approach to anatomical structure classification and image tagging that features an intrinsic measure of confidence to estimate its own performance with high reliability and which can be applied to both RGB and multispectral imaging (MI) data. - METHODS: Organ recognition is performed using a superpixel classification strategy based on textural and reflectance information. Classification confidence is estimated by analyzing the dispersion of class probabilities. Assessment of the proposed technology is performed through a comprehensive in vivo study with seven pigs. - RESULTS: When applied to image tagging, mean accuracy in our experiments increased from 65% (RGB) and 80% (MI) to 90% (RGB) and 96% (MI) with the confidence measure. - CONCLUSION: Results showed that the confidence measure had a significant influence on the classification accuracy, and MI data are better suited for anatomical structure labeling than RGB data. - SIGNIFICANCE: This paper significantly enhances the state of art in automatic labeling of endoscopic videos by introducing the use of the confidence metric, and by being the first study to use MI data for in vivo laparoscopic tissue classification. The data of our experiments will be released as the first in vivo MI dataset upon publication of this paper. 
650 4 |a Animals 
650 4 |a Digestive System 
650 4 |a Digestive System Surgical Procedures 
650 4 |a Image Processing, Computer-Assisted 
650 4 |a Laparoscopy 
650 4 |a Spleen 
650 4 |a Swine 
650 4 |a Video Recording 
700 1 |a Wirkert, Sebastian J.  |e VerfasserIn  |4 aut 
700 1 |a Kenngott, Hannes Götz  |d 1979-  |e VerfasserIn  |0 (DE-588)141469994  |0 (DE-627)62780117X  |0 (DE-576)324023065  |4 aut 
700 1 |a Vemuri, Anant S.  |e VerfasserIn  |4 aut 
700 1 |a Apitz, Martin  |d 1987-  |e VerfasserIn  |0 (DE-588)1071497219  |0 (DE-627)825950252  |0 (DE-576)433113499  |4 aut 
700 1 |a Mayer, Benjamin  |d 1989-  |e VerfasserIn  |0 (DE-588)1185990690  |0 (DE-627)1665270780  |4 aut 
700 1 |a De Momi, Elena  |e VerfasserIn  |4 aut 
700 1 |a Mattos, Leonardo S.  |e VerfasserIn  |4 aut 
700 1 |a Maier-Hein, Lena  |d 1980-  |e VerfasserIn  |0 (DE-588)1075029252  |0 (DE-627)832869899  |0 (DE-576)190090804  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE transactions on biomedical engineering  |d New York, NY : IEEE, 1964  |g 65(2018), 11, Seite 2649-2659  |h Online-Ressource  |w (DE-627)320614050  |w (DE-600)2021742-0  |w (DE-576)094080682  |x 1558-2531  |7 nnas 
773 1 8 |g volume:65  |g year:2018  |g number:11  |g pages:2649-2659  |g extent:11  |a Uncertainty-aware organ classification for surgical data science applications in laparoscopy 
856 4 0 |u https://doi.org/10.1109/TBME.2018.2813015  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200430 
993 |a Article 
994 |a 2018 
998 |g 1075029252  |a Maier-Hein, Lena  |m 1075029252:Maier-Hein, Lena  |d 50000  |e 50000PM1075029252  |k 0/50000/  |p 9  |y j 
998 |g 1185990690  |a Mayer, Benjamin  |m 1185990690:Mayer, Benjamin  |p 6 
998 |g 1071497219  |a Apitz, Martin  |m 1071497219:Apitz, Martin  |d 910000  |d 910200  |e 910000PA1071497219  |e 910200PA1071497219  |k 0/910000/  |k 1/910000/910200/  |p 5 
998 |g 141469994  |a Kenngott, Hannes Götz  |m 141469994:Kenngott, Hannes Götz  |d 910000  |d 910200  |e 910000PK141469994  |e 910200PK141469994  |k 0/910000/  |k 1/910000/910200/  |p 3 
999 |a KXP-PPN1696943191  |e 3646435666 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title":"Uncertainty-aware organ classification for surgical data science applications in laparoscopy","title_sort":"Uncertainty-aware organ classification for surgical data science applications in laparoscopy"}],"note":["Gesehen am 30.04.2020"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"person":[{"display":"Moccia, Sara","given":"Sara","role":"aut","family":"Moccia"},{"family":"Wirkert","role":"aut","given":"Sebastian J.","display":"Wirkert, Sebastian J."},{"display":"Kenngott, Hannes Götz","role":"aut","given":"Hannes Götz","family":"Kenngott"},{"display":"Vemuri, Anant S.","family":"Vemuri","role":"aut","given":"Anant S."},{"family":"Apitz","given":"Martin","role":"aut","display":"Apitz, Martin"},{"display":"Mayer, Benjamin","family":"Mayer","given":"Benjamin","role":"aut"},{"display":"De Momi, Elena","given":"Elena","role":"aut","family":"De Momi"},{"family":"Mattos","given":"Leonardo S.","role":"aut","display":"Mattos, Leonardo S."},{"given":"Lena","role":"aut","family":"Maier-Hein","display":"Maier-Hein, Lena"}],"relHost":[{"titleAlt":[{"title":"Transactions on biomedical engineering"}],"pubHistory":["11.1964 -"],"name":{"displayForm":["Institute of Electrical and Electronics Engineers"]},"corporate":[{"role":"aut","display":"Institute of Electrical and Electronics Engineers"}],"part":{"volume":"65","year":"2018","extent":"11","text":"65(2018), 11, Seite 2649-2659","issue":"11","pages":"2649-2659"},"id":{"zdb":["2021742-0"],"issn":["1558-2531"],"eki":["320614050"]},"recId":"320614050","physDesc":[{"extent":"Online-Ressource"}],"disp":"Institute of Electrical and Electronics EngineersIEEE transactions on biomedical engineering","origin":[{"dateIssuedKey":"1964","dateIssuedDisp":"1964-","publisherPlace":"New York, NY","publisher":"IEEE"}],"title":[{"title":"IEEE transactions on biomedical engineering","title_sort":"IEEE transactions on biomedical engineering","subtitle":"a publication of the IEEE Engineering in Medicine and Biology Society"}],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"}}],"origin":[{"dateIssuedDisp":"9 March 2018","dateIssuedKey":"2018"}],"recId":"1696943191","physDesc":[{"extent":"11 S."}],"id":{"doi":["10.1109/TBME.2018.2813015"],"eki":["1696943191"]},"name":{"displayForm":["Sara Moccia, Sebastian J. Wirkert, Hannes Kenngott, Anant S. Vemuri, Martin Apitz, Benjamin Mayer, Elena De Momi, Senior Member, IEEE, Leonardo S. Mattos, Member, IEEE, and Lena Maier-Hein"]}} 
SRT |a MOCCIASARAUNCERTAINT9201