Could the black hole singularity be a field singularity?

In the wake of interest to find black hole solutions with scalar hair, we investigate the effects of disformal transformations on static spherically symmetric spacetimes with a nontrivial scalar field. In particular, we study solutions that have a singularity in a given frame, while the action is re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Domènech Fuertes, Guillem (VerfasserIn) , Naruko, Atsushi (VerfasserIn) , Sasaki, Misao (VerfasserIn) , Wetterich, Christof (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 26 February 2020
In: International journal of modern physics
Year: 2020, Jahrgang: 29, Heft: 3
ISSN:1793-6594
DOI:10.1142/S0218271820500261
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1142/S0218271820500261
Verlag, lizenzpflichtig, Volltext: https://www.worldscientific.com/doi/abs/10.1142/S0218271820500261
Volltext
Verfasserangaben:Guillem Domènech, Atsushi Naruko, Misao Sasaki and Christof Wetterich
Beschreibung
Zusammenfassung:In the wake of interest to find black hole solutions with scalar hair, we investigate the effects of disformal transformations on static spherically symmetric spacetimes with a nontrivial scalar field. In particular, we study solutions that have a singularity in a given frame, while the action is regular. We ask if there exists a different choice of field variables such that the geometry and the fields are regular. We find that in some cases disformal transformations can remove a singularity from the geometry or introduce a new horizon. This is possible since the Weyl tensor is not invariant under a general disformal transformation. There exists a class of metrics which can be brought to Minkowksi geometry by a disformal transformation, which may be called disformally flat metrics. We investigate three concrete examples from massless scalar fields to Horndeski theory for which the singularity can be removed from the geometry. This might indicate that no physical singularity is present. We also propose a disformal invariant tensor.
Beschreibung:Gesehen am 30.04.2020
Beschreibung:Online Resource
ISSN:1793-6594
DOI:10.1142/S0218271820500261