Parameter inference with estimated covariance matrices

Abstract. When inferring parameters from a Gaussian-distributed data set by computing a likelihood, a covariance matrix is needed that describes the data error

Saved in:
Bibliographic Details
Main Authors: Sellentin, Elena (Author) , Heavens, Alan (Author)
Format: Article (Journal)
Language:English
Published: 2016
In: Monthly notices of the Royal Astronomical Society. Letters
Year: 2015, Volume: 456, Issue: 1, Pages: L132-L136
ISSN:1745-3933
DOI:10.1093/mnrasl/slv190
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/mnrasl/slv190
Verlag, lizenzpflichtig, Volltext: https://academic.oup.com/mnrasl/article/456/1/L132/2589782
Get full text
Author Notes:Elena Sellentin and Alan F. Heavens
Description
Summary:Abstract. When inferring parameters from a Gaussian-distributed data set by computing a likelihood, a covariance matrix is needed that describes the data error
Item Description:Published: 23 December 2015
Gesehen am 04.05.2020
Physical Description:Online Resource
ISSN:1745-3933
DOI:10.1093/mnrasl/slv190