Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses

Artificial neural networks exhibit learning abilities and can perform tasks which are tricky for conventional computing systems, such as pattern recognition. Here, Serb et al. show experimentally that memristor arrays can learn reversibly from noisy data thanks to sophisticated learning rules.

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Serb, Alexander (VerfasserIn) , Bill, Johannes (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 29 Sep 2016
In: Nature Communications
Year: 2016, Jahrgang: 7
ISSN:2041-1723
DOI:10.1038/ncomms12611
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/ncomms12611
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/ncomms12611
Volltext
Verfasserangaben:Alexander Serb, Johannes Bill, Ali Khiat, Radu Berdan, Robert Legenstein & Themis Prodromakis
Beschreibung
Zusammenfassung:Artificial neural networks exhibit learning abilities and can perform tasks which are tricky for conventional computing systems, such as pattern recognition. Here, Serb et al. show experimentally that memristor arrays can learn reversibly from noisy data thanks to sophisticated learning rules.
Beschreibung:Gesehen am 05.05.2020
Beschreibung:Online Resource
ISSN:2041-1723
DOI:10.1038/ncomms12611