Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses

Artificial neural networks exhibit learning abilities and can perform tasks which are tricky for conventional computing systems, such as pattern recognition. Here, Serb et al. show experimentally that memristor arrays can learn reversibly from noisy data thanks to sophisticated learning rules.

Saved in:
Bibliographic Details
Main Authors: Serb, Alexander (Author) , Bill, Johannes (Author)
Format: Article (Journal)
Language:English
Published: 29 Sep 2016
In: Nature Communications
Year: 2016, Volume: 7
ISSN:2041-1723
DOI:10.1038/ncomms12611
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/ncomms12611
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/ncomms12611
Get full text
Author Notes:Alexander Serb, Johannes Bill, Ali Khiat, Radu Berdan, Robert Legenstein & Themis Prodromakis

MARC

LEADER 00000caa a2200000 c 4500
001 1697223087
003 DE-627
005 20220818070320.0
007 cr uuu---uuuuu
008 200505s2016 xx |||||o 00| ||eng c
024 7 |a 10.1038/ncomms12611  |2 doi 
035 |a (DE-627)1697223087 
035 |a (DE-599)KXP1697223087 
035 |a (OCoLC)1341318504 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Serb, Alexander  |e VerfasserIn  |0 (DE-588)1210561972  |0 (DE-627)1698609566  |4 aut 
245 1 0 |a Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses  |c Alexander Serb, Johannes Bill, Ali Khiat, Radu Berdan, Robert Legenstein & Themis Prodromakis 
264 1 |c 29 Sep 2016 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 05.05.2020 
520 |a Artificial neural networks exhibit learning abilities and can perform tasks which are tricky for conventional computing systems, such as pattern recognition. Here, Serb et al. show experimentally that memristor arrays can learn reversibly from noisy data thanks to sophisticated learning rules. 
700 1 |a Bill, Johannes  |e VerfasserIn  |0 (DE-588)1138256773  |0 (DE-627)895583453  |0 (DE-576)492447241  |4 aut 
773 0 8 |i Enthalten in  |t Nature Communications  |d [London] : Springer Nature, 2010  |g 7(2016) Artikel-Nummer 12611, 9 Seiten  |h Online-Ressource  |w (DE-627)626457688  |w (DE-600)2553671-0  |w (DE-576)331555905  |x 2041-1723  |7 nnas  |a Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses 
773 1 8 |g volume:7  |g year:2016  |g extent:9  |a Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses 
856 4 0 |u https://doi.org/10.1038/ncomms12611  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/ncomms12611  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200505 
993 |a Article 
994 |a 2016 
998 |g 1138256773  |a Bill, Johannes  |m 1138256773:Bill, Johannes  |d 130000  |d 130700  |e 130000PB1138256773  |e 130700PB1138256773  |k 0/130000/  |k 1/130000/130700/  |p 2 
999 |a KXP-PPN1697223087  |e 3658977302 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1697223087","language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 05.05.2020"],"person":[{"display":"Serb, Alexander","roleDisplay":"VerfasserIn","role":"aut","family":"Serb","given":"Alexander"},{"display":"Bill, Johannes","roleDisplay":"VerfasserIn","role":"aut","family":"Bill","given":"Johannes"}],"title":[{"title_sort":"Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses","title":"Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses"}],"relHost":[{"title":[{"title":"Nature Communications","title_sort":"Nature Communications"}],"part":{"year":"2016","extent":"9","volume":"7","text":"7(2016) Artikel-Nummer 12611, 9 Seiten"},"pubHistory":["2010-"],"recId":"626457688","language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 13.06.24"],"disp":"Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapsesNature Communications","id":{"issn":["2041-1723"],"zdb":["2553671-0"],"eki":["626457688"]},"origin":[{"publisher":"Springer Nature ; Nature Publishing Group UK","dateIssuedDisp":"[2010]-","publisherPlace":"[London] ; [London]"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"9 S."}],"name":{"displayForm":["Alexander Serb, Johannes Bill, Ali Khiat, Radu Berdan, Robert Legenstein & Themis Prodromakis"]},"id":{"eki":["1697223087"],"doi":["10.1038/ncomms12611"]},"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"29 Sep 2016"}]} 
SRT |a SERBALEXANUNSUPERVIS2920