Higher-order segmentation via multicuts

Multicuts enable to conveniently represent discrete graphical models for unsupervised and supervised image segmentation, in the case of local energy functions that exhibit symmetries. The basic Potts model and natural extensions thereof to higher-order models provide a prominent class of such object...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kappes, Jörg Hendrik (VerfasserIn) , Speth, Markus (VerfasserIn) , Reinelt, Gerhard (VerfasserIn) , Schnörr, Christoph (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: [2016]
In: Computer vision and image understanding
Year: 2015, Jahrgang: 143, Pages: 104-119
ISSN:1090-235X
DOI:10.1016/j.cviu.2015.11.005
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.cviu.2015.11.005
Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S1077314215002490
Volltext
Verfasserangaben:Jörg Hendrik Kappes, Markus Speth, Gerhard Reinelt, Christoph Schnörr
Beschreibung
Zusammenfassung:Multicuts enable to conveniently represent discrete graphical models for unsupervised and supervised image segmentation, in the case of local energy functions that exhibit symmetries. The basic Potts model and natural extensions thereof to higher-order models provide a prominent class of such objectives, that cover a broad range of segmentation problems relevant to image analysis and computer vision. We exhibit a way to systematically take into account such higher-order terms for computational inference. Furthermore, we present results of a comprehensive and competitive numerical evaluation of a variety of dedicated cutting-plane algorithms. Our approach enables the globally optimal evaluation of a significant subset of these models, without compromising runtime. Polynomially solvable relaxations are studied as well, along with advanced rounding schemes for post-processing.
Beschreibung:Available online 21 November 2015
Gesehen am 07.05.2020
Beschreibung:Online Resource
ISSN:1090-235X
DOI:10.1016/j.cviu.2015.11.005