Protein-specific localization of a rhodamine-based calcium-sensor in living cells

A small synthetic calcium sensor that can be site-specifically coupled to proteins in living cells by utilizing the bio-orthogonal HaloTag labeling strategy is presented. We synthesized an iodo-derivatized BAPTA chelator with a tetramethyl rhodamine fluorophore that allows further modification by So...

Full description

Saved in:
Bibliographic Details
Main Authors: Best, Marcel (Author) , Porth, Isabel (Author) , Hauke, Sebastian (Author) , Braun, Felix (Author) , Herten, Dirk-Peter (Author) , Wombacher, Richard (Author)
Format: Article (Journal)
Language:English
Published: 07 Apr 2016
In: Organic & biomolecular chemistry
Year: 2016, Volume: 14, Issue: 24, Pages: 5606-5611
ISSN:1477-0539
DOI:10.1039/C6OB00365F
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1039/C6OB00365F
Verlag, lizenzpflichtig, Volltext: https://pubs.rsc.org/en/content/articlelanding/2016/ob/c6ob00365f
Get full text
Author Notes:Marcel Best, Isabel Porth, Sebastian Hauke, Felix Braun, Dirk-Peter Herten, Richard Wombacher
Description
Summary:A small synthetic calcium sensor that can be site-specifically coupled to proteins in living cells by utilizing the bio-orthogonal HaloTag labeling strategy is presented. We synthesized an iodo-derivatized BAPTA chelator with a tetramethyl rhodamine fluorophore that allows further modification by Sonogashira cross-coupling. The presented calcium sensitive dye shows a 200-fold increase in fluorescence upon calcium binding. The derivatization with an aliphatic linker bearing a terminal haloalkane-function by Sonogashira cross-coupling allows the localization of the calcium sensor to Halo fusion proteins which we successfully demonstrate in in vitro and in vivo experiments. The herein reported highly sensitive tetramethyl rhodamine based calcium indicator, which can be selectively localized to proteins, is a powerful tool to determine changes in calcium levels inside living cells with spatiotemporal resolution.
Item Description:Gesehen am 11.05.2020
Physical Description:Online Resource
ISSN:1477-0539
DOI:10.1039/C6OB00365F