Radiomic profiling of glioblastoma: Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models

PurposeTo evaluate whether radiomic feature-based magnetic resonance (MR) imaging signatures allow prediction of survival and stratification of patients with newly diagnosed glioblastoma with improved accuracy compared with that of established clinical and radiologic risk models.Materials and Method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vollmuth, Philipp (VerfasserIn) , Burth, Sina (VerfasserIn) , Wick, Antje (VerfasserIn) , Götz, Michael (VerfasserIn) , Eidel, Oliver (VerfasserIn) , Schlemmer, Heinz-Peter (VerfasserIn) , Maier-Hein, Klaus H. (VerfasserIn) , Wick, Wolfgang (VerfasserIn) , Bendszus, Martin (VerfasserIn) , Radbruch, Alexander (VerfasserIn) , Bonekamp, David (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: [September 2016]
In: Radiology
Year: 2016, Jahrgang: 280, Heft: 3, Pages: 880-889
ISSN:1527-1315
DOI:10.1148/radiol.2016160845
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1148/radiol.2016160845
Verlag, lizenzpflichtig, Volltext: https://pubs.rsna.org/doi/10.1148/radiol.2016160845
Volltext
Verfasserangaben:Philipp Kickingereder, Sina Burth, Antje Wick, Michael Götz, Oliver Eidel, Heinz-Peter Schlemmer, Klaus H. Maier-Hein, Wolfgang Wick, Martin Bendszus, Alexander Radbruch, David Bonekamp

MARC

LEADER 00000caa a2200000 c 4500
001 1697840612
003 DE-627
005 20220818081458.0
007 cr uuu---uuuuu
008 200511s2016 xx |||||o 00| ||eng c
024 7 |a 10.1148/radiol.2016160845  |2 doi 
035 |a (DE-627)1697840612 
035 |a (DE-599)KXP1697840612 
035 |a (OCoLC)1341319739 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Vollmuth, Philipp  |d 1987-  |e VerfasserIn  |0 (DE-588)1043270086  |0 (DE-627)771319177  |0 (DE-576)394600738  |4 aut 
245 1 0 |a Radiomic profiling of glioblastoma  |b Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models  |c Philipp Kickingereder, Sina Burth, Antje Wick, Michael Götz, Oliver Eidel, Heinz-Peter Schlemmer, Klaus H. Maier-Hein, Wolfgang Wick, Martin Bendszus, Alexander Radbruch, David Bonekamp 
264 1 |c [September 2016] 
300 |b Illustrationen 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 11.05.2020 
520 |a PurposeTo evaluate whether radiomic feature-based magnetic resonance (MR) imaging signatures allow prediction of survival and stratification of patients with newly diagnosed glioblastoma with improved accuracy compared with that of established clinical and radiologic risk models.Materials and MethodsRetrospective evaluation of data was approved by the local ethics committee and informed consent was waived. A total of 119 patients (allocated in a 2:1 ratio to a discovery [n = 79] or validation [n = 40] set) with newly diagnosed glioblastoma were subjected to radiomic feature extraction (12 190 features extracted, including first-order, volume, shape, and texture features) from the multiparametric (contrast material-enhanced T1-weighted and fluid-attenuated inversion-recovery imaging sequences) and multiregional (contrast-enhanced and unenhanced) tumor volumes. Radiomic features of patients in the discovery set were subjected to a supervised principal component (SPC) analysis to predict progression-free survival (PFS) and overall survival (OS) and were validated in the validation set. The performance of a Cox proportional hazards model with the SPC analysis predictor was assessed with C index and integrated Brier scores (IBS, lower scores indicating higher accuracy) and compared with Cox models based on clinical (age and Karnofsky performance score) and radiologic (Gaussian normalized relative cerebral blood volume and apparent diffusion coefficient) parameters.ResultsSPC analysis allowed stratification based on 11 features of patients in the discovery set into a low- or high-risk group for PFS (hazard ratio [HR], 2.43; P = .002) and OS (HR, 4.33; P < .001), and the results were validated successfully in the validation set for PFS (HR, 2.28; P = .032) and OS (HR, 3.45; P = .004). The performance of the SPC analysis (OS: IBS, 0.149; C index, 0.654; PFS: IBS, 0.138; C index, 0.611) was higher compared with that of the radiologic (OS: IBS, 0.175; C index, 0.603; PFS: IBS, 0.149; C index, 0.554) and clinical risk models (OS: IBS, 0.161, C index, 0.640; PFS: IBS, 0.139; C index, 0.599). The performance of the SPC analysis model was further improved when combined with clinical data (OS: IBS, 0.142; C index, 0.696; PFS: IBS, 0.132; C index, 0.637).ConclusionAn 11-feature radiomic signature that allows prediction of survival and stratification of patients with newly diagnosed glioblastoma was identified, and improved performance compared with that of established clinical and radiologic risk models was demonstrated.© RSNA, 2016Online supplemental material is available for this article. 
700 1 |a Burth, Sina  |e VerfasserIn  |0 (DE-588)1098194896  |0 (DE-627)857484885  |0 (DE-576)469019263  |4 aut 
700 1 |a Wick, Antje  |d 1972-  |e VerfasserIn  |0 (DE-588)122759869  |0 (DE-627)706032101  |0 (DE-576)293409609  |4 aut 
700 1 |a Götz, Michael  |e VerfasserIn  |0 (DE-588)119554541X  |0 (DE-627)1677564326  |4 aut 
700 1 |a Eidel, Oliver  |d 1990-  |e VerfasserIn  |0 (DE-588)1098195175  |0 (DE-627)857485717  |0 (DE-576)469020407  |4 aut 
700 1 |a Schlemmer, Heinz-Peter  |d 1961-  |e VerfasserIn  |0 (DE-588)1025559967  |0 (DE-627)722927142  |0 (DE-576)17334805X  |4 aut 
700 1 |a Maier-Hein, Klaus H.  |d 1980-  |e VerfasserIn  |0 (DE-588)1100551875  |0 (DE-627)85946461X  |0 (DE-576)333771222  |4 aut 
700 1 |a Wick, Wolfgang  |d 1970-  |e VerfasserIn  |0 (DE-588)120297736  |0 (DE-627)080586929  |0 (DE-576)186221320  |4 aut 
700 1 |a Bendszus, Martin  |e VerfasserIn  |0 (DE-588)1032676426  |0 (DE-627)738634131  |0 (DE-576)175567697  |4 aut 
700 1 |a Radbruch, Alexander  |d 1977-  |e VerfasserIn  |0 (DE-588)1022344501  |0 (DE-627)716953951  |0 (DE-576)362851166  |4 aut 
700 1 |a Bonekamp, David  |d 1977-  |e VerfasserIn  |0 (DE-588)128868104  |0 (DE-627)383668581  |0 (DE-576)297371797  |4 aut 
773 0 8 |i Enthalten in  |t Radiology  |d Oak Brook, Ill. : Soc., 1923  |g 280(2016), 3, Seite 880-889  |h Online-Ressource  |w (DE-627)320487253  |w (DE-600)2010588-5  |w (DE-576)094056706  |x 1527-1315  |7 nnas  |a Radiomic profiling of glioblastoma Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models 
773 1 8 |g volume:280  |g year:2016  |g number:3  |g pages:880-889  |g extent:10  |a Radiomic profiling of glioblastoma Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models 
856 4 0 |u https://doi.org/10.1148/radiol.2016160845  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://pubs.rsna.org/doi/10.1148/radiol.2016160845  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200511 
993 |a Article 
994 |a 2016 
998 |g 128868104  |a Bonekamp, David  |m 128868104:Bonekamp, David  |d 50000  |e 50000PB128868104  |k 0/50000/  |p 10 
998 |g 1032676426  |a Bendszus, Martin  |m 1032676426:Bendszus, Martin  |d 910000  |d 911100  |e 910000PB1032676426  |e 911100PB1032676426  |k 0/910000/  |k 1/910000/911100/  |p 9 
998 |g 120297736  |a Wick, Wolfgang  |m 120297736:Wick, Wolfgang  |d 910000  |d 911100  |e 910000PW120297736  |e 911100PW120297736  |k 0/910000/  |k 1/910000/911100/  |p 8 
998 |g 1100551875  |a Maier-Hein, Klaus H.  |m 1100551875:Maier-Hein, Klaus H.  |d 50000  |e 50000PM1100551875  |k 0/50000/  |p 7 
998 |g 1025559967  |a Schlemmer, Heinz-Peter  |m 1025559967:Schlemmer, Heinz-Peter  |d 50000  |e 50000PS1025559967  |k 0/50000/  |p 6 
998 |g 1098195175  |a Eidel, Oliver  |m 1098195175:Eidel, Oliver  |p 5 
998 |g 122759869  |a Wick, Antje  |m 122759869:Wick, Antje  |d 910000  |d 911100  |e 910000PW122759869  |e 911100PW122759869  |k 0/910000/  |k 1/910000/911100/  |p 3 
998 |g 1098194896  |a Burth, Sina  |m 1098194896:Burth, Sina  |d 910000  |d 911100  |e 910000PB1098194896  |e 911100PB1098194896  |k 0/910000/  |k 1/910000/911100/  |p 2 
998 |g 1043270086  |a Vollmuth, Philipp  |m 1043270086:Vollmuth, Philipp  |d 910000  |d 911100  |e 910000PV1043270086  |e 911100PV1043270086  |k 0/910000/  |k 1/910000/911100/  |p 1  |x j 
999 |a KXP-PPN1697840612  |e 3664642503 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"10 S.","noteIll":"Illustrationen"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"doi":["10.1148/radiol.2016160845"],"eki":["1697840612"]},"relHost":[{"id":{"zdb":["2010588-5"],"issn":["1527-1315"],"eki":["320487253"]},"part":{"issue":"3","extent":"10","pages":"880-889","year":"2016","text":"280(2016), 3, Seite 880-889","volume":"280"},"physDesc":[{"extent":"Online-Ressource"}],"note":["Fortsetzung der Druck-Ausgabe","Gesehen 07.11.22"],"name":{"displayForm":["The Radiological Society of North America"]},"origin":[{"publisher":"Soc.","dateIssuedDisp":"1923-","dateIssuedKey":"1923","publisherPlace":"Oak Brook, Ill."}],"corporate":[{"role":"isb","display":"Radiological Society of North America"}],"title":[{"title":"Radiology","title_sort":"Radiology"}],"pubHistory":["1.1923 -"],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"320487253","disp":"Radiomic profiling of glioblastoma Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk ModelsRadiology","language":["eng"]}],"note":["Gesehen am 11.05.2020"],"person":[{"role":"aut","given":"Philipp","display":"Vollmuth, Philipp","family":"Vollmuth"},{"role":"aut","family":"Burth","given":"Sina","display":"Burth, Sina"},{"family":"Wick","given":"Antje","display":"Wick, Antje","role":"aut"},{"role":"aut","given":"Michael","display":"Götz, Michael","family":"Götz"},{"role":"aut","given":"Oliver","display":"Eidel, Oliver","family":"Eidel"},{"role":"aut","display":"Schlemmer, Heinz-Peter","given":"Heinz-Peter","family":"Schlemmer"},{"role":"aut","display":"Maier-Hein, Klaus H.","given":"Klaus H.","family":"Maier-Hein"},{"family":"Wick","given":"Wolfgang","display":"Wick, Wolfgang","role":"aut"},{"given":"Martin","display":"Bendszus, Martin","family":"Bendszus","role":"aut"},{"family":"Radbruch","given":"Alexander","display":"Radbruch, Alexander","role":"aut"},{"family":"Bonekamp","display":"Bonekamp, David","given":"David","role":"aut"}],"recId":"1697840612","origin":[{"dateIssuedDisp":"[September 2016]","dateIssuedKey":"2016"}],"name":{"displayForm":["Philipp Kickingereder, Sina Burth, Antje Wick, Michael Götz, Oliver Eidel, Heinz-Peter Schlemmer, Klaus H. Maier-Hein, Wolfgang Wick, Martin Bendszus, Alexander Radbruch, David Bonekamp"]},"language":["eng"],"title":[{"title_sort":"Radiomic profiling of glioblastoma","subtitle":"Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models","title":"Radiomic profiling of glioblastoma"}]} 
SRT |a VOLLMUTHPHRADIOMICPR2016