Assessing low-intensity relationships in complex networks

Many large network data sets are noisy and contain links representing low-intensity relationships that are difficult to differentiate from random interactions. This is especially relevant for high-throughput data from systems biology, large-scale ecological data, but also for Web 2.0 data on human i...

Full description

Saved in:
Bibliographic Details
Main Author: Spitz, Andreas (Author)
Format: Article (Journal)
Language:English
Published: April 20, 2016
In: PLOS ONE
Year: 2016, Volume: 11, Issue: 4
ISSN:1932-6203
DOI:10.1371/journal.pone.0152536
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1371/journal.pone.0152536
Verlag, lizenzpflichtig, Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152536
Get full text
Author Notes:Andreas Spitz, Anna Gimmler, Thorsten Stoeck, Katharina Anna Zweig, Emőke-Ágnes Horvát

MARC

LEADER 00000caa a2200000 c 4500
001 1698041993
003 DE-627
005 20220818082719.0
007 cr uuu---uuuuu
008 200512s2016 xx |||||o 00| ||eng c
024 7 |a 10.1371/journal.pone.0152536  |2 doi 
035 |a (DE-627)1698041993 
035 |a (DE-599)KXP1698041993 
035 |a (OCoLC)1341323497 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Spitz, Andreas  |d 1981-  |e VerfasserIn  |0 (DE-588)1071830643  |0 (DE-627)826370527  |0 (DE-576)43334105X  |4 aut 
245 1 0 |a Assessing low-intensity relationships in complex networks  |c Andreas Spitz, Anna Gimmler, Thorsten Stoeck, Katharina Anna Zweig, Emőke-Ágnes Horvát 
264 1 |c April 20, 2016 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.05.2020 
520 |a Many large network data sets are noisy and contain links representing low-intensity relationships that are difficult to differentiate from random interactions. This is especially relevant for high-throughput data from systems biology, large-scale ecological data, but also for Web 2.0 data on human interactions. In these networks with missing and spurious links, it is possible to refine the data based on the principle of structural similarity, which assesses the shared neighborhood of two nodes. By using similarity measures to globally rank all possible links and choosing the top-ranked pairs, true links can be validated, missing links inferred, and spurious observations removed. While many similarity measures have been proposed to this end, there is no general consensus on which one to use. In this article, we first contribute a set of benchmarks for complex networks from three different settings (e-commerce, systems biology, and social networks) and thus enable a quantitative performance analysis of classic node similarity measures. Based on this, we then propose a new methodology for link assessment called z* that assesses the statistical significance of the number of their common neighbors by comparison with the expected value in a suitably chosen random graph model and which is a consistently top-performing algorithm for all benchmarks. In addition to a global ranking of links, we also use this method to identify the most similar neighbors of each single node in a local ranking, thereby showing the versatility of the method in two distinct scenarios and augmenting its applicability. Finally, we perform an exploratory analysis on an oceanographic plankton data set and find that the distribution of microbes follows similar biogeographic rules as those of macroorganisms, a result that rejects the global dispersal hypothesis for microbes. 
650 4 |a Biogeography 
650 4 |a Mass media 
650 4 |a Mathematical models 
650 4 |a Phylogeography 
650 4 |a Plankton 
650 4 |a Protein interaction networks 
650 4 |a Protein interactions 
650 4 |a Social networks 
773 0 8 |i Enthalten in  |t PLOS ONE  |d San Francisco, California, US : PLOS, 2006  |g 11(2016,4) Artikel-Nummer e0152536, 17 Seiten  |h Online-Ressource  |w (DE-627)523574592  |w (DE-600)2267670-3  |w (DE-576)281331979  |x 1932-6203  |7 nnas  |a Assessing low-intensity relationships in complex networks 
773 1 8 |g volume:11  |g year:2016  |g number:4  |g extent:17  |a Assessing low-intensity relationships in complex networks 
856 4 0 |u https://doi.org/10.1371/journal.pone.0152536  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152536  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200512 
993 |a Article 
994 |a 2015 
998 |g 1071830643  |a Spitz, Andreas  |m 1071830643:Spitz, Andreas  |d 110000  |d 110300  |e 110000PS1071830643  |e 110300PS1071830643  |k 0/110000/  |k 1/110000/110300/  |p 1  |x j 
999 |a KXP-PPN1698041993  |e 3664909631 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"corporate":[{"display":"Public Library of Science","roleDisplay":"Herausgebendes Organ","role":"isb"}],"origin":[{"dateIssuedDisp":"2006-","publisher":"PLOS ; PLoS","publisherPlace":"San Francisco, California, US ; Lawrence, Kan.","dateIssuedKey":"2006"}],"physDesc":[{"extent":"Online-Ressource"}],"note":["Schreibweise des Titels bis 2012: PLoS ONE","Gesehen am 20.03.19"],"language":["eng"],"disp":"Assessing low-intensity relationships in complex networksPLOS ONE","recId":"523574592","id":{"issn":["1932-6203"],"eki":["523574592"],"zdb":["2267670-3"]},"name":{"displayForm":["Public Library of Science"]},"pubHistory":["1.2006 -"],"part":{"issue":"4","year":"2016","volume":"11","text":"11(2016,4) Artikel-Nummer e0152536, 17 Seiten","extent":"17"},"type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title":"PLOS ONE","title_sort":"PLOS ONE"}]}],"physDesc":[{"extent":"17 S."}],"note":["Gesehen am 12.05.2020"],"language":["eng"],"origin":[{"dateIssuedDisp":"April 20, 2016","dateIssuedKey":"2016"}],"person":[{"family":"Spitz","display":"Spitz, Andreas","roleDisplay":"VerfasserIn","given":"Andreas","role":"aut"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title_sort":"Assessing low-intensity relationships in complex networks","title":"Assessing low-intensity relationships in complex networks"}],"recId":"1698041993","id":{"eki":["1698041993"],"doi":["10.1371/journal.pone.0152536"]},"name":{"displayForm":["Andreas Spitz, Anna Gimmler, Thorsten Stoeck, Katharina Anna Zweig, Emőke-Ágnes Horvát"]}} 
SRT |a SPITZANDREASSESSINGL2020