A Newton-Galerkin method for fluid flow exhibiting uncertain periodic dynamics

The determination of limit-cycles plays an important role in characterizing complex dynamical systems, such as unsteady fluid flows. In practice, dynamical systems are described by models equations involving parameters which are seldom exactly known, leading to parametric uncertainties. These parame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schick, Michael (VerfasserIn) , Heuveline, Vincent (VerfasserIn) , Le Maître, O. P. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 04 February 2016
In: SIAM review
Year: 2016, Jahrgang: 58, Heft: 1, Pages: 119-140
ISSN:1095-7200
DOI:10.1137/15M104311X
Online-Zugang:Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1137/15M104311X
Verlag, lizenzpflichtig, Volltext: https://epubs.siam.org/doi/10.1137/15M104311X
Volltext
Verfasserangaben:M. Schick, V. Heuveline, O.P. Le Maître
Beschreibung
Zusammenfassung:The determination of limit-cycles plays an important role in characterizing complex dynamical systems, such as unsteady fluid flows. In practice, dynamical systems are described by models equations involving parameters which are seldom exactly known, leading to parametric uncertainties. These parameters can be suitably modeled as random variables, so if the system possesses almost surely a stable time periodic solution, limit-cycles become stochastic, too. This paper introduces a novel numerical method for the computation of stable stochastic limit-cycles based on the spectral stochastic finite element method with polynomial chaos (PC) expansions.
Beschreibung:Gesehen am 13.05.2020
Beschreibung:Online Resource
ISSN:1095-7200
DOI:10.1137/15M104311X